首页> 外文学位 >Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides.
【24h】

Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides.

机译:使用硅纳米颗粒及其与碱金属氢化物的混合物制氢。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases.;Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %.;In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per mole of Si. We compare our silicon nanoparticles (∼10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ∼10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water.;Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.
机译:氢是一种有前途的能源载体,可用于运输或移动应用的燃料电池,发动机和涡轮机。氢是理想的能量载体,因为氢在空气中的氧化会释放大量的能量(热或电化学),并且仅产生水作为产物。相反,碳氢化合物能源载体不可避免地会产生CO2,从而导致全球变暖。尽管在大型固定式应用中二氧化碳捕集可能被证明是可行的,但在运输和移动应用中实施二氧化碳捕集却是艰巨的挑战。因此,在这些情况下,特别需要像氢这样的零排放能量载体。使用H2作为能量载体还带来了新的挑战,例如安全处理压缩氢气以及实施新的运输,存储和输送过程及基础设施。使用当前的存储技术,与其他汽车燃料相比,氢气的单位体积能量非常低。压缩氢的高密度存储需要高压和/或低温的组合,这不是很实用。储存的替代方法是使用固体轻质含氢材料系统,该系统具有长久的耐用性,良好的吸附性能和高活性。由于其理论上的高氢容量,已对诸如活性炭,碳纳米纤维和碳纳米管等碳材料进行了大量研究。然而,尚未达到理论值,并且这些材料中的氢吸收容量低于10重量%。在本文中,我们研究了硅在制氢中的应用。由于反应动力学较慢,硅水氧化产生的氢已被忽略。我们假设通过使用高表面积的硅纳米颗粒可以提高氢气的产生速率。我们的激光热解生产的纳米颗粒显示出惊人的快速氢生成和高氢产率,超过了每摩尔Si的理论最大值2摩尔H2。我们将硅纳米颗粒(直径约10nm)与商用硅纳米粉(直径小于100nm)和球磨硅粉(325目)进行了比较。将粒径减小至10 nm时速率的增加甚至大于基于表面积增加的预期增加。在从<100 nm到约10 nm的粒子中,比表面积增加了6倍,而氢气的产生速率增加了150倍。但是,在所有情况下,硅都需要碱(例如NaOH,KOH,肼) )以催化其与水反应。金属氢化物也是有前途的储氢材料。最佳的金属氢化物在中等温度和压力下具有较高的储氢密度,可安全且可控地释放氢,并在空气中稳定。碱金属氢化物具有高的储氢密度,但与水的反应性高。为了在保持高存储容量的同时控制这种爆炸性,我们将硅纳米颗粒与氢化物混合。这具有双重好处:(1)氢化物-水反应产生碱催化的硅氧化所需的碱金属氢氧化物,(2)用10nm涂层稀释,硅可以降低氢化物的反应性,从而使过程更可控。最初,我们分析了纯碱金属氢化物和碱土金属氢化物的水解。氢化锂比氢化钠或氢化镁具有特别高的氢重量密度以及更快的反应动力学。在对产氢量的分析中,我们发现,硅纳米颗粒-金属氢化物混合物的氢产率高于纯氢化物水解的氢产率。使用我们的10nm硅纳米颗粒的氢化硅混合物产生的氢产率很高,超过了理论产率。观察到一些证据表明,加入硅纳米粒子后氢化物反应速度减慢。

著录项

  • 作者

    Patki, Gauri Dilip.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2013
  • 页码 49 p.
  • 总页数 49
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号