首页> 外文学位 >Numerical methods for solving wave scattering problems.
【24h】

Numerical methods for solving wave scattering problems.

机译:解决波散射问题的数值方法。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, the author presents several numerical methods for solving scalar and electromagnetic wave scattering problems. These methods are taken from the papers of Professor Alexander Ramm and the author, see [1] and [2].;In Chapter 1, scalar wave scattering by many small particles of arbitrary shapes with impedance boundary condition is studied. The problem is solved asymptotically and numerically under the assumptions a d lambda, where k = 2pi/lambda is the wave number, lambda is the wave length, a is the characteristic size of the particles, and d is the smallest distance between neighboring particles. A fast algorithm for solving this wave scattering problem by billions of particles is presented. The algorithm comprises the derivation of the (ORI) linear system and makes use of Conjugate Orthogonal Conjugate Gradient method and Fast Fourier Transform. Numerical solutions of the scalar wave scattering problem with 1, 4, 7, and 10 billions of small impedance particles are achieved for the first time. In these numerical examples, the problem of creating a material with negative refraction coefficient is also described and a recipe for creating materials with a desired refraction coefficient is tested.;In Chapter 2, electromagnetic (EM) wave scattering problem by one and many small perfectly conducting bodies is studied. A numerical method for solving this problem is presented. For the case of one body, the problem is solved for a body of arbitrary shape, using the corresponding boundary integral equation. For the case of many bodies, the problem is solved asymptotically under the physical assumptions a d lambda, where a is the characteristic size of the bodies, d is the minimal distance between neighboring bodies, lambda = 2pi/k is the wave length and k is the wave number. Numerical results for the cases of one and many small bodies are presented. Error analysis for the numerical method are also provided.
机译:本文提出了几种求解标量和电磁波散射问题的数值方法。这些方法取材于Alexander Ramm教授和作者的论文,请参见[1]和[2]。在第一章中,研究了具有阻抗边界条件的任意形状的许多小颗粒的标量波散射。在a d lambda的假设下,渐近地和数值地解决了问题,其中k = 2pi / lambda是波数,lambda是波长,a是粒子的特征尺寸,d是最小距离在相邻粒子之间。提出了一种解决数十亿个粒子的波散射问题的快速算法。该算法包括(ORI)线性系统的推导,并利用共轭正交共轭梯度法和快速傅里叶变换。首次获得具有1、4、7和100亿个小阻抗粒子的标量波散射问题的数值解。在这些数值示例中,还描述了创建具有负折射系数的材料的问题,并测试了创建具有所需折射系数的材料的方法。;在第二章中,电磁波(EM)的散射问题非常小。研究了导电体。提出了解决该问题的数值方法。对于一个物体,使用相应的边界积分方程可解决任意形状的物体的问题。对于许多物体,在物理假设a d lambda的情况下,可以渐近解决问题,其中a是物体的特征尺寸,d是相邻物体之间的最小距离,lambda = 2pi / k是波长,k是波数。给出了一个或多个小物体情况下的数值结果。还提供了数值方法的误差分析。

著录项

  • 作者

    Tran, Nhan Thanh.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Applied mathematics.;Computer science.;Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号