首页> 外文学位 >Non-convex Optimization in Machine Learning: Provable Guarantees Using Tensor Methods.
【24h】

Non-convex Optimization in Machine Learning: Provable Guarantees Using Tensor Methods.

机译:机器学习中的非凸优化:使用张量方法的可保证。

获取原文
获取原文并翻译 | 示例

摘要

In the last decade, machine learning algorithms have been substantially developed and they have gained tremendous empirical success. But, there is limited theoretical understanding about this success. Most real learning problems can be formulated as non-convex optimization problems which are difficult to analyze due to the existence of several local optimal solutions. In this dissertation, we provide simple and efficient algorithms for learning some probabilistic models with provable guarantees on the performance of the algorithm. We particularly focus on analyzing tensor methods which entail non-convex optimization. Furthermore, our main focus is on challenging overcomplete models. Although many existing approaches for learning probabilistic models fail in the challenging overcomplete regime, we provide scalable algorithms for learning such models with low computational and statistical complexity.;In probabilistic modeling, the underlying structure which describes the observed variables can be represented by latent variables. In the overcomplete models, these hidden underlying structures are in a higher dimension compared to the dimension of observed variables. A wide range of applications such as speech and image are well-described by overcomplete models. In this dissertation, we propose and analyze overcomplete tensor decomposition methods and exploit them for learning several latent representations and latent variable models in the unsupervised setting. This include models such as multiview mixture model, Gaussian mixtures, Independent Component Analysis, and Sparse Coding (Dictionary Learning). Since latent variables are not observed, we also have the identifiability issue in latent variable modeling and characterizing latent representations. We also propose sufficient conditions for identifiability of overcomplete topic models. In addition to unsupervised setting, we adapt the tensor techniques to supervised setting for learning neural networks and mixtures of generalized linear models.
机译:在过去的十年中,机器学习算法得到了长足的发展,并获得了巨大的经验成功。但是,关于这一成功的理论理解有限。大多数实际的学习问题可以表述为非凸优化问题,由于存在多个局部最优解,因此难以分析。本文提供了简单有效的算法来学习一些概率模型,并为算法的性能提供了可保证的保证。我们特别关注分析需要非凸优化的张量方法。此外,我们的主要重点是挑战超完备模型。尽管许多现有的概率模型学习方法在具有挑战性的超完备机制中都失败了,但我们提供了可扩展的算法来学习此类模型,但计算和统计复杂度较低。在概率建模中,描述观测变量的基础结构可以由潜在变量表示。在超完备模型中,与观察变量的维数相比,这些隐藏的基础结构的维数更高。超完备的模型很好地描述了语音和图像等各种应用。本文提出并分析了超完备的张量分解方法,并将其用于在无监督条件下学习几种潜在表示和潜在变量模型。这包括多视图混合模型,高斯混合,独立分量分析和稀疏编码(字典学习)等模型。由于未观察到潜在变量,因此在潜在变量建模和表征潜在表示中也存在可识别性问题。我们还提出了足够的条件来识别不完整的主题模型。除无监督设置外,我们还将张量技术调整为有监督设置,以学习神经网络和广义线性模型的混合。

著录项

  • 作者

    Janzamin, Majid.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Computer science.;Artificial intelligence.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 351 p.
  • 总页数 351
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号