首页> 外文学位 >Bayesian generative modeling for complex dynamical systems.
【24h】

Bayesian generative modeling for complex dynamical systems.

机译:复杂动力学系统的贝叶斯生成建模。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a Bayesian generative modeling approach for complex dynamical systems for emotion-interaction patterns within multivariate data collected in social psychology studies. While dynamical models have been used by social psychologists to study complex psychological and behavior patterns in recent years, most of these studies have been limited by using regression methods to fit the model parameters from noisy observations. These regression methods mostly rely on the estimates of the derivatives from the noisy observation, thus easily result in overfitting and fail to predict future outcomes. A Bayesian generative model solves the problem by integrating the prior knowledge of where the data comes from with the observed data through posterior distributions. It allows the development of theoretical ideas and mathematical models to be independent of the inference concerns. Besides, Bayesian generative statistical modeling allows evaluation of the model based on its predictive power instead of the model residual error reduction in regression methods to prevent overfitting in social psychology data analysis.;In the proposed Bayesian generative modeling approach, this dissertation uses the State Space Model (SSM) to model the dynamics of emotion interactions. Specifically, it tests the approach in a class of psychological models aimed at explaining the emotional dynamics of interacting couples in committed relationships. The latent states of the SSM are composed of continuous real numbers that represent the level of the true emotional states of both partners. One can obtain the latent states at all subsequent time points by evolving a differential equation (typically a coupled linear oscillator (CLO)) forward in time with some known initial state at the starting time. The multivariate observed states include self-reported emotional experiences and physiological measurements of both partners during the interactions. To test whether well-being factors, such as body weight, can help to predict emotion-interaction patterns, We construct functions that determine the prior distributions of the CLO parameters of individual couples based on existing emotion theories. Besides, we allow a single latent state to generate multivariate observations and learn the group-shared coefficients that specify the relationship between the latent states and the multivariate observations.;Furthermore, we model the nonlinearity of the emotional interaction by allowing smooth changes (drift) in the model parameters. By restricting the stochasticity to the parameter level, the proposed approach models the dynamics in longer periods of social interactions assuming that the interaction dynamics slowly and smoothly vary over time. The proposed approach achieves this by applying Gaussian Process (GP) priors with smooth covariance functions to the CLO parameters. Also, we propose to model the emotion regulation patterns as clusters of the dynamical parameters. To infer the parameters of the proposed Bayesian generative model from noisy experimental data, we develop a Gibbs sampler to learn the parameters of the patterns using a set of training couples.;To evaluate the fitted model, we develop a multi-level cross-validation procedure for learning the group-shared parameters and distributions from training data and testing the learned models on held-out testing data. During testing, we use the learned shared model parameters to fit the individual CLO parameters to the first 80% of the time points of the testing data by Monte Carlo sampling and then predict the states of the last 20% of the time points. By evaluating models with cross-validation, one can estimate whether complex models are overfitted to noisy observations and fail to generalize to unseen data. I test our approach on both synthetic data that was generated by the generative model and real data that was collected in multiple social psychology experiments. The proposed approach has the potential to model other complex behavior since the generative model is not restricted to the forms of the underlying dynamics.
机译:本文针对社会心理学研究中所收集的多元数据,提出了一种复杂的动力学系统,用于情感互动模式的贝叶斯生成建模方法。尽管近年来社会心理学家已经使用动力学模型来研究复杂的心理和行为模式,但是大多数研究都受到了限制,因为使用回归方法来拟合来自嘈杂观测的模型参数。这些回归方法主要依赖于嘈杂的观测结果对导数的估计,因此容易导致过度拟合并且无法预测未来的结果。贝叶斯生成模型通过集成后验分布将数据来自何处的先验知识与观察到的数据相集成,从而解决了该问题。它允许理论思想和数学模型的开发独立于推理问题。此外,贝叶斯生成统计建模允许基于模型的预测能力进行评估,而不是通过回归方法减少模型的残差,以防止在社会心理学数据分析中过拟合;在贝叶斯生成建模方法中,本文使用状态空间模型(SSM)对情感互动的动力学进行建模。具体来说,它在一类心理学模型中测试了该方法,该模型旨在解释在已确定的关系中互动的夫妻的情绪动力学。 SSM的潜在状态由连续的实数组成,这些实数代表双方的真实情绪状态。通过在开始时间以某个已知的初始状态随时间向前发展微分方程(通常是耦合线性振荡器(CLO)),可以在所有后续时间点获得潜在状态。多元观察到的状态包括在互动过程中自我报告的情感体验和两个伴侣的生理测量。为了测试诸如体重之类的健康因素是否可以帮助预测情感互动模式,我们基于现有的情感理论构造了确定单个夫妻CLO参数的先验分布的函数。此外,我们允许单个潜在状态生成多元观测值,并学习指定潜在状态与多元观测值之间关系的群共享系数。此外,我们通过允许平滑变化(漂移)来建模情绪交互的非线性在模型参数中。通过将随机性限制在参数水平,假设交互动力学随时间缓慢而平稳地变化,则所提出的方法对较长时间的社会交互的动力学建模。所提出的方法通过将具有平滑协方差函数的高斯过程(GP)先验应用于CLO参数来实现此目的。此外,我们建议将情绪调节模式建模为动态参数的簇。为了从嘈杂的实验数据中推断出拟议的贝叶斯生成模型的参数,我们开发了一个吉布斯采样器,以使用一组训练对学习模式的参数。为评估拟合模型,我们开发了多层次的交叉验证从训练数据中学习组共享参数和分布,并在保留的测试数据上测试学习的模型的过程。在测试期间,我们使用学习的共享模型参数通过蒙特卡洛采样将单个CLO参数拟合到测试数据的前80%时间点,然后预测最后20%时间点的状态。通过使用交叉验证评估模型,可以估算出复杂的模型是否过度适合嘈杂的观察结果,而无法归纳为看不见的数据。我对生成模型生成的综合数据和在多个社会心理学实验中收集的真实数据进行了测试。由于生成模型不限于基本动力学的形式,因此所提出的方法具有对其他复杂行为进行建模的潜力。

著录项

  • 作者

    Guan, Jinyan.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Computer science.;Social psychology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号