首页> 外文学位 >Neuromechanics of Maneuverability: Sensory-Neural and Mechanical Processing for the Control of High-Speed Locomotion.
【24h】

Neuromechanics of Maneuverability: Sensory-Neural and Mechanical Processing for the Control of High-Speed Locomotion.

机译:可操纵性的神经力学:用于控制高速运动的感觉神经和机械处理。

获取原文
获取原文并翻译 | 示例

摘要

Maneuverability in animals is unparalleled when compared to the most maneuverable human-engineered mobile robot. Maneuverability arises in part from animals' ability to integrate multimodal sensory information with an ongoing motor program while interacting within a spatiotemporally complex world. Complicating this integration, actions from the nervous system must operate through the mechanics of the body. Since sensors and muscles are fused to a mechanical frame, mechanical processing occurs at both at the sensory (input) and motor (output) levels. To reveal the basic organization of the neural and mechanical parts of organisms during locomotion, I studied high-speed sensorimotor tasks in a remarkably maneuverable insect, the cockroach, which integrates sensory information to navigate through irregular, unpredictable environments.;Animals can expend energy to acquire information by emitting signals or moving sensory structures. However, it is not clear if the energy from locomotion, itself, could permit a different form of sensing, in which animals transfer energy from movement to reconfigure a passive sensor. In the first chapter, I demonstrate that cockroaches can transfer the self-generated energy from locomotion to actively control the state of the antenna via passive mechanical elements, with important effects on body control. This chapter advances our current understanding of sensorimotor integration during rapid running by showing how the whole body, not just the sensor, can participate in sensory acquisition.;Information flow from individual sensory units operating on locomotion-driven appendages to the generation of motor patterns is not well understood. The nervous system must rapidly integrate sensory information from noisy channels while constrained by neural conduction delays. When executing high-speed wall following using their antennae, cockroaches presumably integrate information between self and obstacles to generate appropriate turns, preventing collisions. Previous work on modeling high-speed wall following within a control theoretic framework predicted that a sensory controller for antenna tactile sensing of wall position (P) and the derivative of position (D) was sufficient for control of the body. I hypothesized that individual mechanoreceptive units along the antenna were tuned to enable stable running. Extracellular multi-unit recordings revealed P and D sensitivity and variable-latency responses, suggesting the antenna may function as a delay line. In the second chapter, I show how individual sensor units distributed on the antenna precondition neural signals for the control of high-speed turning. Since sensors of animals are embedded within the body, they must function through the mechanics of the body. In Chapter 3, I studied mechanical properties of the primary tactile sensors of cockroaches, the antennae, using experimental and engineering approaches. I revealed how both the static and dynamic properties of the antenna may influence sensory acquisition during quasi-static and dynamic sensorimotor tasks. Further elucidation of antennal mechanical tuning will lead to new hypotheses, integrating distributed mechanosensory inputs from a dynamic sensory appendage operating on a moving body.;During rapid escape from predators, the neuromechanical system of animals is pushed to operate closer to its limits. When operating at such extremes, small animals are true escape artists benefiting from enhanced maneuverability, in part due to scaling. In Chapter 4, I show a novel neuromechanical strategy used by the cockroach P. americana and the gecko H. platyrus which may facilitate their escape when encountering a gap. Both species ran rapidly at 12-15 body lengths-per-second toward a ledge without braking, dove off the ledge, attached their feet by claws like a grappling hook, and used a pendulum-like motion that can exceed one meter-per-second to swing around to an inverted position under the ledge, out of sight. In cockroaches, I show that the behavior is mediated by a rapid claw-engagement reflex initiated during the fall. Finally, I show how the novel behavior has inspired the design of a small, hexapedal robot that can assist rescuers during natural and human-made disasters.
机译:与最具机动性的人类移动机器人相比,动物的机动性无与伦比。可操作性部分源于动物在时空复杂的世界中进行交互时将多模式感官信息与正在进行的运动程序整合的能力。使这种整合复杂化的是,来自神经系统的动作必须通过人体的力学来进行。由于传感器和肌肉融合到机械框架上,因此机械处理同时在感觉(输入)和运动(输出)级别进行。为了揭示运动过程中生物体神经和机械部分的基本组织,我研究了一种在可操纵性极强的昆虫蟑螂中的高速感觉运动任务,该蟑螂整合了感觉信息以在不规则,不可预测的环境中导航;动物可以将能量消耗到通过发射信号或移动感觉结构来获取信息。但是,尚不清楚运动产生的能量本身是否可以允许其他形式的感应,其中动物从运动中传递能量以重新配置被动传感器。在第一章中,我证明了蟑螂可以通过运动传递自生能量,从而通过被动机械元件主动控制天线的状态,这对身体控制有重要影响。本章通过展示整个身体而不是传感器如何参与感官获取,来增进我们对快速运动感官整合的当前理解;从运动驱动的附件运行的各个感官单元到运动模式生成的信息流是不太了解。神经系统必须迅速整合来自嘈杂通道的感觉信息,同时受到神经传导延迟的限制。当蟑螂使用触角执行高速隔离墙时,蟑螂大概会整合自身和障碍物之间的信息以生成适当的转弯,从而防止碰撞。先前在控制理论框架内对高速墙壁建模的工作预测,用于天线触觉感知墙壁位置(P)和位置导数(D)的传感控制器足以控制身体。我假设对天线上的各个机械感受单元进行了调整,以实现稳定运行。细胞外多单位录音揭示了P和D灵敏度和可变潜伏期响应,表明天线可能充当延迟线。在第二章中,我将展示如何将分布在天线上的各个传感器单元预先设置为控制高速转弯的神经信号。由于动物的传感器嵌入体内,因此它们必须通过人体的力学发挥作用。在第3章中,我使用实验和工程方法研究了蟑螂的主要触觉传感器,触角的机械性能。我揭示了天线的静态和动态特性如何在准静态和动态感官运动任务期间影响感官获取。进一步阐明触角机械调谐将导致新的假设,将来自在运动物体上运行的动态感官附件的分布式机械感官输入进行整合。在从掠食者迅速逃脱的过程中,动物的神经机械系统被迫接近其极限运行。在如此极端的条件下操作时,小动物是真正的逃生艺术家,这得益于增强的可操作性,部分原因是缩放。在第4章中,我展示了美洲蟑螂和壁虎H. platyrus所使用的一种新颖的神经力学策略,这种策略在遇到缺口时可能有助于它们逃脱。两种物种都以每秒12-15体长的速度快速向着壁架奔跑,没有刹车,跳下壁架,用爪子抓住钩子钩住了它们的脚,并采用了类似摆的动作,每秒钟可能超过一米。第二,在视线范围内,在窗台下翻转到倒立的位置。在蟑螂中,我证明了行为是由在秋季跌倒时快速启动的爪接触反射所介导的。最后,我展示了这种新颖的行为如何激发了小型六足机器人的设计,该机器人可以在自然和人为灾难中协助救援人员。

著录项

  • 作者

    Mongeau, Jean-Michel.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Neuroscience.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号