首页> 外文学位 >Analytical modeling and design optimization of piezoelectric bimorph energy harvester.
【24h】

Analytical modeling and design optimization of piezoelectric bimorph energy harvester.

机译:压电双压电晶片能量采集器的分析建模和设计优化。

获取原文
获取原文并翻译 | 示例

摘要

As wireless sensor networks continue to grow in size and scope, the limited life span of batteries produces an increasingly challenging economic problem, in terms of not only the capital cost of replacing so many batteries, but also the labor costs incurred in performing battery replacement, particularly with sensor nodes in remote or limited-access locations. This growing problem has motivated the development of new technologies for harvesting energy from the ambient environment. Piezoelectric energy harvesters (PEH) are under consideration as a means for converting mechanical energy, specifically vibration energy, to electrical energy, with the goal of realizing completely self-powered sensor systems. There are three primary goals with regards to this study. The first goal is to develop an analytical model for the resonant frequency of a piezoelectric cantilever bimorph (PCB) energy harvester, aiming to study the geometric effects of both the piezoelectric bimorph and the proof mass on the resonant frequency of a PEH. The analytical model is developed using the Rayleigh-Ritz method and Lagrange's equation of motion and is validated by finite element analysis (FEA) and laboratory experiments. It is shown that this analytical model is better at predicting resonant frequencies than a model currently available in the literature. The second goal is the development of an enhanced analytical model for the voltage and power output of the PCB. The modified analytical model is realized using the conservation of energy method and Euler-Bernoulli beam theory. It is compared with a general equivalent spring-mass-damper model and an equivalent electrical circuit model, and validated by the laboratory prototype experiments. The results show that the modified model provides improved prediction of PCB voltage and power output. Simultaneously, finite element analysis on piezoelectric structures using the commercially available software package ANSYSRTM Multiphysics is also carried out to study the dynamic response of the PCB in terms of both tip displacements and the electrical potentials of the top and bottom electrodes. It is shown that the simulations are quite close to the experimental results, in terms of both peak frequencies and peak amplitudes. The third goal is the design optimization of the PCB energy harvester in order to maximize the power harvesting from the ambient vibration. Three design optimization approaches are carried out, including multi-parameter optimization of the single PCB generator using a genetic algorithm (GA), a band-pass generator design with a group of the PCB generators based on the system transfer function, and the new design features of the PCB generator for consideration of the improvements of the strain energy and the lifetime. The results of the optimized designs are validated through FEA, and the discrepancies between the theoretical derivation and FEA are also analyzed. Other optimal design considerations are also discussed.
机译:随着无线传感器网络规模和范围的不断扩大,电池寿命有限,这带来了越来越具有挑战性的经济问题,不仅是更换这么多电池的资本成本,而且还包括更换电池产生的人工成本,特别是在远程或访问受限的位置的传感器节点。这个日益严重的问题促使人们开发用于从周围环境中收集能量的新技术。压电能量收集器(PEH)正在考虑作为一种将机械能(特别是振动能)转换为电能的方法,目的是实现完全自供电的传感器系统。这项研究有三个主要目标。第一个目标是为压电悬臂双压电晶片(PCB)能量采集器建立一个谐振频率分析模型,旨在研究压电双压电晶片和证明质量对PEH谐振频率的几何影响。该分析模型是使用Rayleigh-Ritz方法和拉格朗日运动方程式开发的,并通过有限元分析(FEA)和实验室实验进行了验证。结果表明,与文献中当前可用的模型相比,该分析模型在预测共振频率方面更好。第二个目标是为PCB的电压和功率输出开发增强的分析模型。利用能量守恒法和欧拉-伯努利梁理论实现了改进的分析模型。将其与一般的等效弹簧-质量-阻尼器模型和等效的电路模型进行比较,并通过实验室原型实验进行了验证。结果表明,改进后的模型可以更好地预测PCB电压和功率输出。同时,还使用市售软件包ANSYSRTM Multiphysics对压电结构进行了有限元分析,以研究PCB的动态响应,包括尖端位移以及顶部和底部电极的电势。结果表明,在峰值频率和峰值幅度方面,模拟都非常接近实验结果。第三个目标是PCB能量收集器的设计优化,以最大程度地利用环境振动收集能量。进行了三种设计优化方法,包括使用遗传算法(GA)对单个PCB发生器进行多参数优化,基于系统传递函数的一组PCB发生器的带通发生器设计以及新设计考虑到应变能和寿命的改善,PCB发生器的特性。通过有限元分析验证了优化设计的结果,并分析了理论推导和有限元分析之间的差异。还讨论了其他最佳设计注意事项。

著录项

  • 作者

    Zhang, Long.;

  • 作者单位

    The University of Alabama.;

  • 授予单位 The University of Alabama.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号