首页> 外文学位 >Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications.
【24h】

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications.

机译:用于热管理和太阳能转换应用的微米/纳米级相变系统。

获取原文
获取原文并翻译 | 示例

摘要

The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies.;Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (± 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (± 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots.;In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ∼2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies.;In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.
机译:论文的第一部分提出了一项研究,该研究实施了微米和纳米级工程表面,以增强毛细管芯结构和池沸腾系统中的蒸发和沸腾相变传热。毛细管芯吸表面是热管和蒸气室散热器的不可或缺的组成部分,通常用于微电子设备的热管理。另外,在浸没式冷却系统中可能会遇到池沸腾系统,对于微电子设备甚至数据中心的热管理应用,浸入式冷却系统正变得越来越普遍。与状态从液体变为蒸气相关的潜热,以及驱动该过程所需的小温差产生了很大的传热特性。此外,由于不需要外部能量来驱动相变过程,因此这些系统非常适合便携式设备,并且比其他热管理技术更有利于降低成本和能耗。这些设备中使用的最先进的毛细管芯是通常由烧结铜介质制成。这些多孔结构产生了发生蒸发的液体薄膜的高表面积,从而促进了相变传热。然而,在烧结过程中形成的颗粒点接触处的热界面以及这些芯结构中复杂的液体/蒸气流动产生了高的热和液体流动阻力,并限制了它们可以耗散的最大热通量。在毛细管芯中,最大热通量通常由毛细管或沸腾极限和工程表面来控制,该工程表面延迟了这些极限并产生具有大的液体薄膜表面积的结构,在该结构中促进相变传热。在这项研究中,由微通道分隔的由微型针状翅片组成的双孔介质被检查为蒸气室热管的蒸发芯的候选结构。较小的孔用于产生高毛细吸力,而较大的微通道用于减轻流动阻力。发现传热系数取决于液膜的面积覆盖,该液膜在三相接触线的弯月面附近的厚度约为几微米。我们通过使用微观结构来改变表面积与体积之比,从而控制区域覆盖率和薄膜厚度。在一些样品中,观察到从蒸发热传递到成核沸腾的转变。虽然很难确定何时发生转变,但可以确定蒸发在晶核沸腾中占主导地位,反之亦然的体制。使用面积为1 cm2的灯芯可以消散277.0(±9.7)W / cm2的热通量,而使用较小加热器的灯芯可以消散高达733.1(±103.4)W / cm2的热通量,以模拟局部热源。在浸没式冷却应用中遇到的池沸腾系统中,传热系数(HTC)由气泡成核部位的密度以及气泡从表面脱离时在液/蒸气流中产生的搅动来控制。成核位点密度和释放速率通常由表面形态决定。池沸腾系统中的另一个重要参数是可以安全消散的最大热通量(CHF)。实际上,该量比动力学理论所建议的限制小两个数量级。对于基本上无限,光滑,润湿良好的表面,流体动力学不稳定性理论成功地捕获了远离加热表面的液/气相互作用,从而成功地预测了CHF。在不易应用流体力学理论公式的有限的微米和纳米结构表面上,其他影响可能会导致相变传热特性。在这里,我们还提出了在毛细管芯实验中使用的双孔微结构表面的沸腾沸腾研究。通过减小孔径来控制结构,以确定增加的毛细管压力是否可以增强加热器边缘的再润湿并延迟CHF。两种实验系统之间的比较研究表明,尽管毛细管限制在毛细管芯实验中很重要,但对于池沸腾系统中使用的这些润湿良好的微结构表面,基于加热器尺寸定义的流体动力学限制会导致CHF的发生。与不存在空腔的表面相比,还研究了其他包含周期性微尺度空腔的分层纳米线表面,发现它们的传热系数特性提高了约2.4倍,而不会损害CHF。这些研究表明通过实施分层结构来提高传热系数的途径;然而,对于增加各种形状的有限尺寸表面的CHF并没有明确的方法。;在本论文的第二部分,在光致变色分子系统的“相变”中寻求太阳能的存储:化学中的太阳能存储光敏分子的键(光化学反应)和随后以热的形式可逆地以热的形式回收能量。这些分子系统是无法满足负载均衡需求或便携式市政供热应用的光伏和太阳能技术的有趣替代品。这些分子通常由有机化合物制成,以快速分解,较短的储能时间规模和较差的储能效率而闻名。因此,在过去的几十年中,它们已被放弃作为实用的太阳能存储系统。另一方面,尚未针对这些应用广泛地探索有机金属分子系统。最近的研究表明,有机金属(富瓦烯)二钌FvRu2具有出色的储能特性和耐久性。在这里,我们报告基于FvRu2的双(1,1-二甲基三癸基)取代衍生物的全周期分子太阳能热(MOST)微流体系统,该系统可长期存储太阳能(110 J / g),并且“按需提供暴露于催化剂时释放的能量。此处开发的微流体系统非常适合进行光转化表征和仔细研究潜在的催化剂,并且可以扩展到研究许多其他分子系统。此处提出的工作目的是证明在MOST系统中“按需”存储和释放太阳能是可行的,并激发了对其他光致变色有机金属系统的未来研究。

著录项

  • 作者

    Coso, Dusan.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Chemical.;Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号