首页> 外文学位 >Novel finite element algorithms with applications to skeletal muscle simulation.
【24h】

Novel finite element algorithms with applications to skeletal muscle simulation.

机译:新颖的有限元算法在骨骼肌模拟中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis develops a musculoskeletal simulation framework and showcases the algorithmic developments that arose in the process of creating it. Muscles are simulated as deformable Lagrangian solids with a transversely isotropic, quasi-incompressible constitutive model coupled to articulated rigid bones in the skeleton. Muscle and bone geometry is created from the visible human data set using an implicit surface based tetrahedral meshing algorithm for creating meshes that are well suited for large deformation. Additionally, a novel invertible finite element algorithm (IFEM) designed specifically for largely deforming skeletal muscles is presented. Typical finite element based simulations of elastic solids fail when the interpolating functions misinterpret large deformations as having locally negative volume at quadrature points, our approach extends the elastic response in a meaningful way to such configurations, drastically improving robustness to large deformation. Simulations are done with semi-implicit Newmark integration and quasistatic time stepping schemes. In the case of the latter, we present a novel quasistatic algorithm that alleviates geometric and material indefiniteness allowing one to use fast conjugate gradient solvers during Newton-Raphson iteration. Quasistatic and implicit time integration schemes are typically employed to alleviate the stringent time step restrictions imposed by their explicit counterparts. However, time step restrictions can also be ameliorated with regular mesh elements. As a result, we present a muscle geometry embedding framework that alleviates time step restrictions by virtue of this principle. A fascia/collision algorithm is also presented in the context of this embedding framework. Finally, though all musculoskeletal simulations in this thesis make use of kinematically prescribed skeletal motion, we would ultimately like to simulate the skeleton as a dynamic articulated rigid body. We present a preliminary step in this direction with a prestabilization framework for enforcing articulation constraints.
机译:本文开发了一个肌肉骨骼仿真框架,并展示了在创建过程中出现的算法发展。将肌肉模拟为可变形的拉格朗日体,并具有横向各向同性,准不可压缩的本构模型,该模型与骨骼中的铰接式刚性骨骼耦合。使用基于隐式表面的四面体网格化算法,根据可见的人类数据集创建肌肉和骨骼的几何形状,以创建非常适合大变形的网格。此外,提出了一种新颖的可逆有限元算法(IFEM),该算法专门设计用于使骨骼肌大量变形。当插值函数将大变形误解为在正交点处具有局部负体积时,基于弹性实体的典型基于有限元的模拟就会失败,我们的方法以有意义的方式将弹性响应扩展到此类构造,从而大大提高了大变形的鲁棒性。使用半隐式Newmark集成和准静态时间步长方案进行了仿真。在后者的情况下,我们提出了一种新颖的准静态算法,该算法减轻了几何和材料的不确定性,从而使人们可以在Newton-Raphson迭代期间使用快速共轭梯度求解器。通常采用准静态和隐式时间积分方案来缓解其显式对应项所施加的严格时间步长限制。但是,使用常规网格元素也可以改善时间步长限制。结果,我们提出了一种肌肉几何形状嵌入框架,该框架通过该原理减轻了时间步长的限制。在此嵌入框架的上下文中还提出了一种面板/碰撞算法。最后,尽管本文中所有的肌肉骨骼模拟都采用了运动学规定的骨骼运动,但我们最终还是希望将骨骼模拟为动态铰接的刚体。我们提出了一个在此方向上的初步步骤,该框架具有用于执行发音约束的预稳定框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号