首页> 外文学位 >Amino acid stability and interactions with mineral surfaces.
【24h】

Amino acid stability and interactions with mineral surfaces.

机译:氨基酸稳定性以及与矿物表面的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Amino acids are the basic building blocks of proteins, one of the most important classes of biomolecules. The deep-sea hydrothermal vents have been often recognized as an exceptional microenvironment where chemical evolution of biomolecules might have occurred. The stability of biomolecules such as amino acids under such environments is of interest in various fields of study. Here I studied the stability of glutamate with and without reducing hydrothermal conditions imposed by 13 mmolar aqueous H2 at temperatures of 150 to 250 °C and initial pH values of 6 and 10. The results indicate that the amount of glutamate decomposition products depend on the temperature, the pH and particularly the redox state of the fluid. This result suggests that reducing hydrothermal environments may have been favorable for assembling the building blocks of biomolecules in the origin of life.;How abiotically formed biomolecules interact with mineral surfaces has been recognized as an important issue in that mineral surfaces may have played an important role in their selection, organization and concentration in the prebiotic era. In this study, I investigated the adsorption of the oppositely charged amino acids glutamate and lysine with and without the addition of Ca2+. Without Ca2+, glutamate shows a maximum in adsorption at a pH of ~4 and lysine shows a maximum in adsorption at a pH of ~9.4. In comparison, with calcium present, glutamate showed maxima in adsorption at both low and high pH, whereas lysine showed no adsorption at all. These dramatic effects can be described as cooperative adsorption between glutamate and Ca2+ and as competitive adsorption between lysine and Ca2+.;The mechanism by which amino acids attach to mineral surfaces is vital for understanding bioadhesion, biomineralization, and potentially the origin of life. I have conducted surface-enhanced Raman spectroscopy (SERS) measurements to probe the attachment configurations of L-DOPA on nano-rutile particles at different pH and surface coverages. The SERS spectra show peaks that progressively change with pH and surface coverage, indicating changing surface speciation. This observation provides a perspective on the possible role of mineral surfaces in the chemical evolution of biomolecules on early Earth.
机译:氨基酸是蛋白质的最基本组成部分,而蛋白质是最重要的生物分子类别之一。深海热液喷口通常被认为是可能发生生物分子化学演化的特殊微环境。在各种研究领域中,在这样的环境下生物分子例如氨基酸的稳定性是令人关注的。在这里,我研究了在150到250°C的温度和初始pH值分别为6和10的情况下,在不降低13 mmolar H2施加的水热条件下,谷氨酸盐的稳定性。结果表明,谷氨酸盐分解产物的量取决于温度,pH值,尤其是流体的氧化还原状态。该结果表明减少热液环境可能有利于生命起源中生物分子的组装。非生物形成的生物分子如何与矿物质表面相互作用已被认为是一个重要问题,因为矿物质表面可能起了重要作用。在益生元时代的选择,组织和集中。在这项研究中,我研究了添加和不添加Ca2 +时带相反电荷的氨基酸谷氨酸和赖氨酸的吸附。没有Ca 2+时,谷氨酸盐在〜4的pH值下显示最大吸附,而赖氨酸在〜9.4的pH值下显示最大吸附。相比之下,在存在钙的情况下,谷氨酸盐在低pH和高pH下均显示出最大吸附,而赖氨酸则完全没有吸附。这些惊人的作用可以描述为谷氨酸和Ca2 +之间的协同吸附,以及赖氨酸和Ca2 +之间的竞争性吸附。氨基酸附着在矿物表面上的机理对于理解生物粘附,生物矿化以及潜在的生命起源至关重要。我进行了表面增强拉曼光谱(SERS)测量,以探测L-DOPA在不同pH和表面覆盖率的纳米金红石颗粒上的附着构型。 SERS光谱显示出随pH和表面覆盖率逐渐变化的峰,表明表面形态发生了变化。该观察结果为矿物表面在地球早期生物分子的化学演化中可能发挥的作用提供了一个视角。

著录项

  • 作者

    Lee, Namhey.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Environmental Geology.;Geochemistry.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号