首页> 外文学位 >Predictive atomistic simulations of electronic properties of realistic nanoscale devices: A multiscale modeling approach.
【24h】

Predictive atomistic simulations of electronic properties of realistic nanoscale devices: A multiscale modeling approach.

机译:现实的纳米级设备的电子特性的预测性原子模拟:一种多尺度建模方法。

获取原文
获取原文并翻译 | 示例

摘要

Scaling of CMOS towards its ultimate limits, where quantum effects and atomistic variability due to fabrication, along with recent emphasis on heterogeneous integration of non-digital devices for increasing the functional diversification presents us with fundamentally new challenges. A comprehensive understanding of design and operation of these nanoscale transistors, and other electronic devices like RF-MEMS, requires an insight into their electronic and mechanical properties that are strongly influenced by underlying atomic structure. Hence, continuum descriptions of materials and use of empirical models at these scales become questionable. This increase in complexity of electronic devices necessitates an understanding at a more fundamental level to accurately predict the performance and reliability of these devices. The objective of this thesis is to outline the application of multiscale predictive modeling methods, ranging from atoms to devices, for addressing these challenges. This capability is demonstrated using two examples: characterization of (i) dielectric charging in RF-MEMS, and (ii) transport properties of Ge-nanofins. For characterizing the dielectric charging phenomenon, a continuum dielectric charging model, augmented by first principles informed trap distributions, is used to predict current transient measurements across a broad range of voltages and temperatures. These simulations demonstrate using ab initio informed model not only reduces the empiricism (number of adjustable parameters) in the model but also leads to a more accurate model over a broad range of operating conditions, and enable the precise determination of additional material parameters. These atomistic calculations also provide detailed information about the nature of charge traps and their trapping mechanisms that are not accessible experimentally; such information could prove invaluable in defect engineering. The second problem addresses the effect of the in-homogeneous strain profiles, inherent in strain-engineered Ge nanofins, on their transport properties. Fully atomistic simulations, involving a combination molecular dynamics simulations with first-principles based force-fields and semi-empirical tight binding calculations, coupled with linearized Boltzmann model are used to calculate the hole transport properties of realistic Ge nanofins (heights 5-15nm and widths 5nm-40nm). Our simulations predict the technological limit of phonon limited hole mobility improvement in Ge channel PMOS devices (H<15nm) and present geometric guidelines for patterning nanofins to engineer high performance uniaxial devices conducive to the existing top-down fabrication approaches. From these calculations, we demonstrate that realistic modeling of the devices requires a reduction in the empiricism of fitting parameters and incorporation of new multi-scale, multi-resolution approach spanning across various spatial and temporal scales. Such physics based predictive multiscale models facilitate an integrated approach for rapid development and pave the way for designing new advanced materials and devices.
机译:CMOS朝着其极限极限的方向扩展,其中量子效应和制造引起的原子可变性,以及最近对非数字器件异构集成以增加功能多样化的重视,给我们带来了根本的新挑战。对这些纳米级晶体管以及其他电子设备(例如RF-MEMS)的设计和操作有全面的了解,需要深入了解其电子和机械性能,这些性能受到底层原子结构的强烈影响。因此,在这些尺度上对材料的连续描述和经验模型的使用变得令人怀疑。电子设备的复杂性的这种增加需要更基本的理解,以准确地预测这些设备的性能和可靠性。本文的目的是概述从原子到器件的多尺度预测建模方法在应对这些挑战中的应用。通过两个示例证明了这种能力:表征(i)RF-MEMS中的介电电荷,以及(ii)Ge-nanofins的传输特性。为了表征介电带电现象,使用由第一原理通知的陷阱分布增强的连续介电带电模型来预测在很宽的电压和温度范围内的电流瞬态测量值。这些模拟表明,使用从头算的模型,不仅可以减少模型中的经验值(可调整参数的数量),而且可以在很宽的工作条件范围内提供更准确的模型,并可以精确确定其他材料参数。这些原子计算还提供了有关电荷陷阱的性质及其诱捕机理的详细信息,这些信息无法通过实验获得。这样的信息在缺陷工程中可能是无价的。第二个问题解决了应变工程Ge纳米鳍所固有的非均匀应变分布对其传输特性的影响。完全原子模拟,包括结合分子动力学模拟与基于第一原理的力场和半经验紧密结合计算,以及线性化的玻尔兹曼模型,用于计算真实的Ge纳米鳍片(高度为5-15nm,宽度为5mm)的空穴传输性质5nm-40nm)。我们的模拟预测了Ge沟道PMOS器件(H <15nm)中声子限制空穴迁移率改善的技术极限,并提出了对纳米鳍片进行构图的几何准则,以设计出有助于现有的自顶向下制造方法的高性能单轴器件。通过这些计算,我们证明了对设备进行逼真的建模需要减少拟合参数的经验性,并且需要纳入跨越各种时空尺度的新型多尺度,多分辨率方法。这种基于物理学的预测性多尺度模型有助于快速开发的集成方法,并为设计新的先进材料和设备铺平了道路。

著录项

  • 作者

    Vedula, Ravi Pramod Kumar.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号