首页> 外文学位 >An atom trap trace analysis (ATTA) system for measuring ultra-low contamination by krypton in xenon dark matter detectors.
【24h】

An atom trap trace analysis (ATTA) system for measuring ultra-low contamination by krypton in xenon dark matter detectors.

机译:原子阱痕量分析(ATTA)系统,用于测量氙暗物质探测器中k的超低污染。

获取原文
获取原文并翻译 | 示例

摘要

The XENON dark matter experiment aims to detect hypothetical weakly interacting massive particles (WIMPs) scattering off nuclei within its liquid xenon (LXe) target. The trace 85Kr in the xenon target undergoes beta-decay with a 687 keV end point and 10.8 year halflife, which contributes background events and limits the sensitivity of the experiment. In order to achieve the desired sensitivity, the contamination by krypton is reduced to the part per trillion (ppt) level by cryogenic distillation. The conventional methods are not well suited for measuring the krypton contamination at such a low level. In this work, we have developed an atom trap trace analysis (ATTA) device to detect the ultra-low krypton concentration in the xenon target. This project was proposed to the National Science Foundation (NSF) as a Major Research Instrumentation (MRI) development [Aprile and Zelevinsky, 2009] and is funded by NSF and Columbia University.;The ATTA method, originally developed at Argonne National Laboratory, uses standard laser cooling and trapping techniques, and counts single trapped atoms. Since the isotopic abundance of 85Kr in nature is 1.5 x 10-11, the 85Kr/Xe level is expected to be ∼10-23, which is beyond the capability of our method. Thus we detect the most abundant (57%) isotope 84Kr, and infer the 85Kr contamination from their known abundances. To avoid contamination by krypton, the setup is tested and optimized with 40 Ar which has a similar cooling wavelength to 84Kr.;Two main challenges in this experiment are to obtain a trapping efficiency high enough to detect krypton impurities at the ppt level, and to achieve the resolution to discriminate single atoms. The device is specially designed and adjusted to meet these challenges. After achieving these criteria with argon gas, we precisely characterize the efficiency of the system using Kr-Xe mixtures with known ratios, and find that ∼90 minutes are required to trap one 84Kr atom at the 1-ppt Kr/Xe contamination.;This thesis describes the design, construction, and experimental results of the ATTA project at Columbia University.
机译:XENON暗物质实验旨在检测假想的弱相互作用的大颗粒(WIMP),它们从其液体氙(LXe)目标内的核中散射出来。氙靶中的痕量85 Kr经过β衰变,终点为687 keV,半衰期为10.8年,这会导致背景事件,并限制了实验的灵敏度。为了达到所需的灵敏度,通过低温蒸馏将k的污染降低到万亿分之一(ppt)的水平。常规方法不太适合于在如此低的水平下测量contamination污染。在这项工作中,我们开发了一种原子阱痕量分析(ATTA)装置,用于检测氙靶中的超低concentration浓度。该项目作为主要研究仪器(MRI)的开发项目,已向国家科学基金会(NSF)提出[Aprile and Zelevinsky,2009],由NSF和哥伦比亚大学资助。ATTA方法最初由阿贡国家实验室(Argonne National Laboratory)开发,使用标准的激光冷却和俘获技术,并计算单个俘获的原子。由于自然界中85 Kr的同位素丰度为1.5 x 10-11,因此85Kr / Xe的水平预计约为10-23,这超出了我们方法的能力。因此,我们检测到最丰富(57%)的同位素84Kr,并从其已知丰度推断出85Kr污染。为避免k污染,在40 Ar的冷却波长与84 Kr相似的条件下对装置进行了测试和优化;该实验的两个主要挑战是获得足够高的捕获效率以检测ppt级的k杂质,并达到分辨单个原子的分辨率。该设备经过专门设计和调整,可以应对这些挑战。用氩气达到这些标准后,我们​​使用已知比率的Kr-Xe混合物精确表征了系统的效率,发现在1-ppt Kr / Xe污染下捕获一个84Kr原子大约需要90分钟。论文描述了哥伦比亚大学ATTA项目的设计,建造和实验结果。

著录项

  • 作者

    Yoon, Tae Hyun.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Physics Atomic.;Physics Astrophysics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号