首页> 外文学位 >Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA).
【24h】

Microalgae Cultivation using Offshore Membrane Enclosures for Growing Algae (OMEGA).

机译:使用离岸膜盒生长藻类(OMEGA)进行微藻培养。

获取原文
获取原文并翻译 | 示例

摘要

Offshore Membrane Enclosures for Growing Algae (OMEGA) cultivate microalgae using wastewater contained in floating photobioreactors (PBRs) deployed in marine environments; thereby eliminating competition with agriculture for water, fertilizer, and land. The offshore placement in protected bays near coastal cities co-locates OMEGA with wastewater outfalls and sources of CO 2-rich flue gas on shore, while the seawater supports the PBRs, regulates temperature and can drive forward osmosis to concentrate nutrients and facilitate microalgal dewatering. To evaluate the feasibility of OMEGA, microalgae were grown on secondary-treated wastewater and simulated flue gas (8.5% CO 2 V/V) in a 110-liter prototype system tested in a seawater tank. The flow-through system consisted of tubular PBRs made of transparent linear low-density polyethylene, a gas exchange and harvesting column (GEHC), two pumps, and a custom supervisory control and data acquisition (SCADA) system. The PBRs contained regularly spaced swirl vanes to impart a helical flow and improve mixing of the circulating culture. About 5% of the culture volume was diverted through the GEHC to remove dissolved oxygen (DO), provide supplemental CO 2, and harvest microalgae in a settling chamber. The SCADA system controlled CO2 injection and recorded DO levels, totalized CO2 flow, temperature, circulation rates, photosynthetic active radiation, and photosynthetic efficiency as determined by fast repetition rate fluorometry. In two experimental trials, totaling 23 days in April and May 2012, microalgal productivity averaged 14.1 +/- 1.3 g m-2 day-1 (n = 16), supplemental CO2 was converted to biomass with >50% efficiency, and >90% of the ammonia-nitrogen was recovered from secondary effluent.;Experimental data collected during prototype evaluation clearly demonstrated that the accumulation of marine biofouling on the PBR tubes strongly suppressed rates of microalgal photosynthesis, as biofouled PBRs consumed less CO 2 than clean PBRs. These results suggest that any OMEGA deployment must have means to remove or prevent biofouling from accumulating on the surface of PBRs. This work also presents preliminary data regarding the use of energy-efficient electrochemical harvesting processes appropriate for the OMEGA configuration presented here. If OMEGA can be optimized for energy efficiency and scaled-up economically, it has the potential to contribute significantly to biofuels production and wastewater treatment.
机译:用于生长藻类的离岸膜封闭物(OMEGA)使用部署在海洋环境中的浮动光生物反应器(PBR)中的废水来培养微藻;从而消除与农业争夺水,肥料和土地的竞争。沿海城市附近受保护海湾的离岸布置使OMEGA与废水排污口以及岸上富含CO 2的烟道气共同定位,而海水则支持PBR,调节温度并可以向前渗透以浓缩养分并促进微藻脱水。为了评估OMEGA的可行性,将微藻类在经过二次处理的废水和模拟烟气(8.5%CO 2 V / V)上生长,并在经海水罐测试的110升原型系统中进行生长。流通系统由透明的线性低密度聚乙烯制成的管状PBR,气体交换和收集塔(GEHC),两个泵以及定制的监控和数据采集(SCADA)系统组成。 PBR包含规则间隔的旋流叶片,以赋予螺旋流并改善循环培养物的混合。约5%的培养物体积通过GEHC转移,以除去溶解氧(DO),提供补充的CO 2并在沉降室内收获微藻。 SCADA系统控制二氧化碳的注入并记录溶解氧水平,总二氧化碳流量,温度,循环速率,光合有效辐射和通过快速重复速率荧光法测定的光合效率。在两项实验中(2012年4月和2012年5月共23天),微藻生产力平均为14.1 +/- 1.3 g m-2 day-1(n = 16),补充的CO2转化为生物质的效率> 50%,> 90从次级污水中回收了氨氮的百分比。;在原型评估期间收集的实验数据清楚地表明,PBR管上海洋生物污垢的积累强烈抑制了微藻光合作用的速率,因为生物污损的PBR消耗的CO 2比清洁的PBR少。这些结果表明,任何OMEGA部署都必须具有消除或防止生物污垢积聚在PBR表面的手段。这项工作还提供了有关适用于此处介绍的OMEGA配置的高能效电化学收集工艺的初步数据。如果可以优化OMEGA的能源效率并在经济上扩大规模,则它有可能为生物燃料生产和废水处理做出重大贡献。

著录项

  • 作者

    Wiley, Patrick Edward.;

  • 作者单位

    University of California, Merced.;

  • 授予单位 University of California, Merced.;
  • 学科 Engineering Environmental.;Alternative Energy.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号