首页> 外文学位 >Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses.
【24h】

Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses.

机译:使用CFD和数值分析了解激波边界层相互作用的流动物理。

获取原文
获取原文并翻译 | 示例

摘要

Mixed compression inlets are common among supersonic propulsion systems. However they are susceptible to total pressure losses due to shock/boundary-layer interactions (SBLI's). Because of their importance, a workshop was held at the 48th American Institute of Aeronautics and Astronautics (AIAA) Aerospace Sciences Meeting in 2010 to gauge current computational fluid dynamics (CFD) tools abilities to predict SBLI's. One conclusion from the workshop was that the CFD consistently failed to agree with the experimental data. This thesis presents additional CFD and numerical analyses that were performed on one of the configurations presented at the workshop.;The additional analyses focused on the University of Michigan's Mach 2.75 Glass Tunnel with a semi-spanning 7.75 degree wedge while exploring key physics pertinent to modeling SBLI's. These include thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver. However, a quasi-1D MATLAB code was developed to interface with the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) code to explore perfect verses non-ideal air as this feature is not supported within OVERFLOW. Further, a grid resolution study was performed on the 3D 56 million grid point grid which was shown to be nearly grid independent. Because the experimental data was obtained via particle image velocimetry (PIV), a fundamental study pertaining to the effects of PIV on post-processing data was also explored.;Results from the CFD simulations showed an improvement in agreement with experimental data with certain settings. This is especially true of the v velocity field within the streamwise data plane. Key contributions to the improvement include utilizing a laminar zone upstream of the wedge (the boundary-layer was considered transitional downstream of the nozzle throat) and the necessity of mimicking PIV particle lag for comparisons. It was also shown that the corner flow separations are highly sensitive to the turbulence model. However, the center flow region, where the experimental data was taken, was not as sensitive to the turbulence model. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.
机译:混合压缩进气口在超音速推进系统中很常见。然而,由于冲击/边界层相互作用(SBLI),它们容易受到总压力损失的影响。由于它们的重要性,于2010年在第48届美国航空航天学会(AIAA)航空科学会议上举行了一次研讨会,以评估当前用于预测SBLI的计算流体动力学(CFD)工具的能力。研讨会的一个结论是,CFD始终未能与实验数据保持一致。本论文介绍了在研讨会上介绍的一种配置下进行的其他CFD和数值分析。;其他分析重点是密歇根大学的马赫2.75玻璃隧道,其半跨距为7.75度,同时探索了与建模相关的关键物理SBLI的。这些包括热力学和粘性边界条件以及湍流建模。大多数分析是使用OVERFLOW流量求解器的3D CFD模拟。但是,开发了准一维MATLAB代码以与美国国家标准技术研究院(NIST)参考流体热力学和传输特性数据库(REFPROP)代码进行接口,以探索理想的非理想空气诗句,因为OVERFLOW不支持此功能。 。此外,对3D 5600万个网格点网格进行了网格分辨率研究,结果表明该网格几乎与网格无关。由于实验数据是通过粒子图像测速仪(PIV)获得的,因此也探索了有关PIV对后处理数据影响的基础研究。CFD模拟结果表明,与某些设置的实验数据相比,其改进。对于流向数据平面内的v速度场尤其如此。改进的主要贡献包括利用楔形物上游的层流区(边界层被认为是喷嘴喉道的下游过渡层)和模仿PIV颗粒滞后进行比较的必要性。还表明,角流分离对湍流模型高度敏感。但是,获取实验数据的中心流动区域对湍流模型不那么敏感。准一维模拟的结果表明,理想空气和理想空气之间的差异很小。

著录项

  • 作者

    Friedlander, David Joshua.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Aerospace.;Physics General.
  • 学位 M.S.
  • 年度 2013
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号