首页> 外文学位 >Identification of Allosteric Mechanisms in Thrombin through Molecular Dynamics Simulations.
【24h】

Identification of Allosteric Mechanisms in Thrombin through Molecular Dynamics Simulations.

机译:通过分子动力学模拟鉴定凝血酶的变构机制。

获取原文
获取原文并翻译 | 示例

摘要

Molecular dynamics (MD) simulation, an established method for investigating the internal motions of biomolecules, is applied to thrombin protein, a critical blood coagulation cascade protease with complex, not yet fully understood regulatory mechanisms. Accelerated MD (AMD) is employed to achieve enhanced conformational sampling of more biologically relevant timescales, and nuclear magnetic resonance (NMR) experiments are used to validate and tune AMD parameters. In chapter 1, the thrombin system and its interaction with cofactor thrombomodulin (TM) is introduced. The potential contribution of dynamics to thrombin allostery is discussed, and methods for MD and AMD simulations are described. In chapter 2, the combined use of NMR and AMD to examine the dynamics of thrombin is detailed. AMD generated ensembles are shown to recapitulate NMR residual dipolar couplings (RDCs), observables that report on ms timescale dynamics. The resulting picture of thrombin depicts a stable core surrounded by highly dynamic surface loops. In chapter 3, a computational study comparing isolated thrombin with TM bound forms is reported. Community network analysis identifies two allosteric pathways from the TM binding exosite to the thrombin active site. The presence of the fourth EGF-like domain of TM, known to be essential for thrombin regulation, is shown to establish and strengthen these allosteric pathways. This essential domain is also observed to elicit enhanced dynamics and cross-correlated motion in the distal active site loops. In chapter 4, these analyses are extended to compare apo thrombin with active site inhibitor bound thrombin. Allosteric pathways between the active and TM binding exosite site are again observed and are altered by the presence of inhibitor. Residual local frustration analysis reveals a minimally frustrated thrombin core surrounded by highly frustrated surface loops. The highly frustrated contacts regions show significant overlap with regions undergoing slow timescale dynamics. In chapter 5, overarching implications for a dynamical mechanism to thrombin:TM allostery are discussed. The collective observations of thrombin active site surface loops undergoing concerted, long timescale dynamics in response to TM binding at exosite 1 strongly suggest a dynamic, allosteric mechanism in thrombin regulation.
机译:分子动力学(MD)模拟是一种研究生物分子内部运动的既定方法,已应用于凝血酶蛋白,凝血酶蛋白是一种关键的凝血级联蛋白酶,具有复杂的,尚未完全了解的调节机制。加速MD(AMD)用于实现更多生物学相关时间尺度的增强构象采样,并且核磁共振(NMR)实验用于验证和调整AMD参数。在第一章中,介绍了凝血酶系统及其与辅因子凝血调节蛋白(TM)的相互作用。讨论了动力学对凝血酶变构的潜在贡献,并描述了MD和AMD模拟的方法。在第二章中,详细介绍了结合使用NMR和AMD来检查凝血酶的动力学。 AMD生成的合奏可概括NMR残留偶极耦合(RDC),可观察到的报告了ms时标动力学。所得的凝血酶图片描述了被高动态表面环包围的稳定核心。在第三章中,进行了一项计算研究,比较了分离的凝血酶和TM结合形式。社区网络分析确定了从TM结合异位点到凝血酶活性位点的两种变构途径。已知TM的第四个EGF样结构域的存在对凝血酶调节至关重要,已显示可建立并加强这些变构途径。还观察到该基本域在远端活动位点环中引起增强的动力学和交叉相关运动。在第4章中,扩展了这些分析以比较载脂蛋白凝血酶和活性位点抑制剂结合的凝血酶。再次观察到活性和TM结合异位点之间的变构途径,并且由于抑制剂的存在而改变。残留的局部挫折分析表明,被最低挫败的凝血酶核心包裹着高度挫败的表面环。高度沮丧的接触区域与经历慢时标动态的区域显示出明显的重叠。在第5章中,讨论了凝血酶:TM变构的动力学机制的总体含义。凝血酶活性位点表面环经历一致的长时间响应于外位蛋白1上的TM结合的动态的强烈观察强烈表明了凝血酶调节的动态变构机制。

著录项

  • 作者

    Gasper, Paul M.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Chemistry Physical.;Chemistry Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号