首页> 外文学位 >Engineering Plasmonic Nanostructures for Multi-Dimensional Biosensing with Surface Plasmon Resonance.
【24h】

Engineering Plasmonic Nanostructures for Multi-Dimensional Biosensing with Surface Plasmon Resonance.

机译:具有表面等离子体共振的多维生物传感的工程等离子体纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

Surface plasmon resonance (SPR) has been broadly used as a powerful biosensing technique for the study of biomolecular interactions. It has the capability of performing real-time and label-free quantitative measurement that is essential to analysis of proteins and many other biomolecules where fluorescent tagging has an adverse effect on accuracy and precision. To further extend the applicability of SPR biosensing, we have developed a new technique platform that allows for a parallel and multi-dimensional detection of molecules of interest on the same sensing interface. Specifically, mass spectrometric and Raman spectroscopic characterization has been enabled to acquire chemical and structural information along with quantitative SPR measurement. Calcinated silicate AuNP microarrays have been fabricated on a glass slide based on the concept of layer-by-layer deposition involving polyelectrolyte, which demonstrated soft ionization and thus highly effective MS analysis of peptides and small molecules in a high-throughput fashion. By deliberately controlling the self-assembly process of calcinated AuNPs into an ultrathin monolayer film, excellent optical performance was obtained, allowing for a cross-platform measurement by localized surface plasmon resonance (LSPR), mass spectrometry, and Raman spectroscopy. We have employed computer simulation based on finite-difference time-domain (FDTD) algorithm for the design of the new sensing substrates. FDTD simulation offers in-depth understanding of the plasmonic coupling conditions and EM field enhancement for the self-assembly of AuNPs, providing the foundation and guidance for advancing optical sensing with nanostructured materials. One Chapter of the thesis is dedicated to the construction of various nano-sized geometries for simulation of plasmonic materials. The work covers from construction of silver clusters with defined nanogap for enhancing fluorescent signal to the design of plasmonic gold nanorod arrays that enable coupling of multi-dimensional propagation of electric fields for novel SPR detection.;In addition, a new approach for SPR analysis of carbohydrate interactions has been developed with fluorochemistry and calcinated SPR gold film. Fluoroalkysilane was used to provide a monolayer modification of the hydrophobic interface for effective capturing of carbohydrate probes through non-covalent interaction. Molecular recognition with various lectins was investigated by real-time kinetic study. Polydimethylsiloxane (PDMS) channel chips were utilized that enabled parallel analysis for high-throughput detection of carbohydrate-protein interaction with SPR imaging technique. Matrix-free LDI-MS of the calcinated gold film and array is not compromised by the SAM coating, allowing for the development of new SPR-MS on-chip analysis. Finally, a novel label-free biosensing approach based on thin-film transmission interferometry (TTi) has been developed with nanoscale porous anodic alumina (PAA) film. The optical phenomenon of TTi has been successfully confirmed by simulation. Performance of TTi sensing in relation to the structural geometries of PAA nanofilm was studied, providing valuable insights into the optimization of TTi-substrate based on porosity, thickness, and pore diameter to achieve high biosensing sensitivity. This newly developed substrate also provides a convenient platform for biological studies of protein adsorption. As a surface-sensitive label-free detection, TTi shows a great potential to be incorporated into the ongoing on-chip SPR-MS biosensor development for achieving higher level of research possibilities.
机译:表面等离子体共振(SPR)已广泛用作研究生物分子相互作用的强大生物传感技术。它具有执行实时和无标记定量测量的能力,这对于分析蛋白质和许多其他生物分子至关重要,而荧光标记会对准确性和精密度产生不利影响。为了进一步扩展SPR生物传感的适用性,我们开发了一种新的技术平台,该平台允许在同一传感界面上并行且多维检测目标分子。具体而言,质谱和拉曼光谱表征已能够获取化学和结构信息以及定量SPR测量。基于涉及聚电解质的逐层沉积的概念,在载玻片上制备了煅烧的硅酸金AuNP微阵列,这证明了软电离,从而以高通量的方式对肽和小分子进行了高效的MS分析。通过故意控制煅烧的AuNPs的自组装过程,使其成为超薄单层膜,可以获得出色的光学性能,从而可以通过局部表面等离子体共振(LSPR),质谱和拉曼光谱进行跨平台测量。我们已经使用基于有限差分时域(FDTD)算法的计算机仿真来设计新的传感基板。 FDTD仿真为AuNPs的自组装提供了对等离子体耦合条件和EM场增强的深入了解,为推进纳米结构材料的光学传感提供了基础和指导。论文的第一章致力于模拟等离子体材料的各种纳米几何结构的构建。这项工作涵盖了从具有定义的纳米间隙的银团簇的构建,以增强荧光信号,到等离激元金纳米棒阵列的设计,该阵列能够耦合电场的多维传播,以进行新颖的SPR检测。此外,一种新的SPR分析方法氟化物和煅烧的SPR金膜已开发出碳水化合物相互作用。氟烷基硅烷用于提供疏水界面的单层修饰,以通过非共价相互作用有效捕获碳水化合物探针。通过实时动力学研究研究了各种凝集素的分子识别。利用聚二甲基硅氧烷(PDMS)通道芯片,该芯片可通过SPR成像技术对碳水化合物-蛋白质相互作用进行高通量检测的并行分析。煅烧金膜和阵列的无基质LDI-MS不受SAM涂层的影响,从而允许开发新的SPR-MS片上分析。最后,已开发出一种基于薄膜透射干涉法(TTi)的新颖的无标记生物传感方法,该方法采用纳米级多孔阳极氧化铝(PAA)膜。通过仿真已经成功地证实了TTi的光学现象。研究了相对于PAA纳米膜的结构几何形状的TTi传感性能,为基于孔隙度,厚度和孔径来优化TTi基板以获得高生物传感灵敏度提供了宝贵的见解。这种新开发的基质还为蛋白质吸附的生物学研究提供了便利的平台。作为一种表面敏感的无标记检测方法,TTi显示出巨大的潜力可被纳入正在进行的片上SPR-MS生物传感器开发中,以实现更高水平的研究可能性。

著录项

  • 作者

    Chen, Chih-Yuan.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号