首页> 外文学位 >Fibrillized peptide hydrogels and microgels for 3D cell culture and tissue engineering.
【24h】

Fibrillized peptide hydrogels and microgels for 3D cell culture and tissue engineering.

机译:用于3D细胞培养和组织工程的原纤维化肽水凝胶和微凝胶。

获取原文
获取原文并翻译 | 示例

摘要

Self-assembling peptide-based nanofibers and hydrogels have been widely applied as cell delivery vehicles, vaccine adjuvants, and scaffolds for tissue engineering and 3D cell culture. Self-assembling peptides, owing to their specific sequences, self-associate into nanofibers when dissolved in aqueous buffers. Highly concentrated peptide solutions can form hydrogels, when triggered by increased ionic strength, pH adjustment, and/or change in temperature. The advantages of these peptide materials are that 1) they are chemically defined, which minimizes their batch-to-batch variances, 2) they are modular, which allows for easy synthesis and the inclusion of multiple different functional ligand-conjugated peptides, 3) they are controllably immunogenic.;Although the general feasibility of self-assembling peptide hydrogels for 3D cell encapsulation has been demonstrated by commercial products and several research groups including our own, these materials are not without their shortcomings. Their application as artificial matrices is hindered by 1) their relatively low mechanical strength and vulnerability to fracture, 2) their extreme thermodynamic stability and lack of mechanisms for degradation, and 3) their temporary cytotoxicity during the cell encapsulation processes. In this thesis, I have designed new peptide/depsipeptide sequences, as well as encapsulation processes, to address the above-mentioned problems. Briefly, I have designed microgels for cell encapsulation as an alternative to bulk encapsulation, which partly solved the fracture-in-gel problem. I have designed ester bond-containing depsipeptides to impart highly controllable biodegradation properties to the materials. I have also designed peptides whose gelation can be triggered by minor pH adjustment, to achieve high degrees of cell survival in the early steps of cell encapsulation.
机译:自组装肽基纳米纤维和水凝胶已被广泛用作组织工程和3D细胞培养的细胞传递载体,疫苗佐剂和支架。由于其特定的序列,自组装肽在溶解于水性缓冲液中时会自缔合成纳米纤维。当离子强度增加,pH调节和/或温度变化触发时,高浓度的肽溶液会形成水凝胶。这些肽材料的优点是:1)通过化学方法定义,可以最大程度地减少批次间的差异; 2)它们是模块化的,可以轻松合成并包含多种不同的功能性配体缀合肽,3)尽管可自组装肽水凝胶用于3D细胞封装的一般可行性已通过商业产品和包括我们自己在内的多个研究小组进行了证明,但这些材料并非没有缺点。 1)它们相对较低的机械强度和易碎性,2)它们极高的热力学稳定性和缺乏降解机理,以及3)它们在细胞封装过程中的暂时性细胞毒性,阻碍了它们作为人造基质的应用。在本文中,我设计了新的肽/二肽序列以及包囊工艺,以解决上述问题。简而言之,我设计了用于细胞封装的微凝胶,以替代整体封装,部分解决了凝胶破裂问题。我设计了含酯键的十肽,以赋予材料高度可控的生物降解性能。我还设计了一些肽,这些肽的凝胶作用可以通过较小的pH调节来触发,从而在细胞封装的早期阶段实现较高的细胞存活率。

著录项

  • 作者

    Tian, Ye Field.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号