首页> 外文学位 >Electromagnetic design optimization: Application to a patch antenna reflection loss on a textured material ('metamaterial') substrate.
【24h】

Electromagnetic design optimization: Application to a patch antenna reflection loss on a textured material ('metamaterial') substrate.

机译:电磁设计优化:应用于带纹理的材料(“超材料”)基板上的贴片天线反射损耗。

获取原文
获取原文并翻译 | 示例

摘要

As electromagnetic analysis and prediction codes have improved dramatically over the past decade, design using these tools becomes an obvious next step to improve antenna or other RF device performance. Both shape and material can be varied to improve antenna characteristics, such as reflection loss and gain. Typical implementations involve a choice of applicable electromagnetic prediction codes (e.g., moment method, finite element method, etc.) nested within a nonlinear optimization construct. Currently, a popular approach to electromagnetic optimization entails use of non-linear and multi-modal optimization methods such as genetic algorithms and simulated annealing. These are known to require thousands of points to achieve a globally optimal solution, even for design spaces that are parametrically small. Generality of design is lost because one is often forced to seek from amongst an endless array of parametric models for shape and material to converge to a solution in a reasonable time.; This work demonstrates that a non-parametric solution to a difficult electromagnetic optimization problem is possible by analyzing the eigendecomposition of a unique form of a Finite Element Boundary Integral (FE-BI) system solution. This new expansion of the FE-BI matrix system provides a broadband approximant that is orders of magnitude faster than the baseline FE-BI prediction code. More importantly, the identified functional form of the eigenvalues allows for the optimal adjustment of the electromagnetic system.; The design goal of this work is to increase the effective bandwidth of a patch antenna by texturing (via contrasting materials) the supporting substrate. The aforementioned eigenvalue adjustments are used to derive the required substrate material texture. This forms a "metamaterial" antenna design approach, as discussed in numerous publications. This new approach is a dramatic leap forward from traditional metamaterial design approaches in that no parametric assumptions or engineering judgments for texturing are required to perform an optimization. Optimized designs with only a few iterative updates are therefore possible. This work demonstrates that antenna reflection loss can be optimized over a wide bandwidth using straightforward engineering principles.
机译:在过去的十年中,随着电磁分析和预测代码的显着改进,使用这些工具进行的设计已成为改善天线或其他RF设备性能的明显下一步。形状和材料都可以改变,以改善天线特性,例如反射损耗和增益。典型的实施方式涉及嵌套在非线性优化构造中的适用电磁预测代码(例如,矩量法,有限元法等)的选择。当前,一种流行的电磁优化方法需要使用非线性和多模式优化方法,例如遗传算法和模拟退火。这些已知需要数千个点才能实现全局最优的解决方案,即使对于参数上很小的设计空间也是如此。设计的一般性丧失了,因为人们常常被迫从无穷无尽的参数模型中寻找形状和材料的参数模型,以便在合理的时间内收敛到解决方案。这项工作表明,通过分析有限元边界积分(FE-BI)系统解决方案的唯一形式的特征分解,可以解决困难的电磁优化问题的非参数解决方案。 FE-BI矩阵系统的这一新扩展提供了比基线FE-BI预测代码快几个数量级的宽带近似值。更重要的是,特征值的确定功能形式允许电磁系统的最佳调整。这项工作的设计目标是通过纹理化(通过对比材料)支撑基板来增加贴片天线的有效带宽。前述特征值调整用于导出所需的基底材料纹理。如许多出版物所述,这形成了一种“超材料”天线设计方法。这种新方法比传统的超材料设计方法有了巨大的飞跃,因为不需要参数假设或纹理化的工程判断就可以进行优化。因此,仅需进行几次迭代更新即可进行优化设计。这项工作表明,可以使用简单的工程原理在宽带宽上优化天线反射损耗。

著录项

  • 作者

    Fischer, Brian E.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号