首页> 外文学位 >Investigation and modeling of pressure dependent yield behavior of 3D stochastic and periodic foams.
【24h】

Investigation and modeling of pressure dependent yield behavior of 3D stochastic and periodic foams.

机译:3D随机和周期性泡沫的压力相关屈服行为的研究和建模。

获取原文
获取原文并翻译 | 示例

摘要

With growing potential of cellular solids in a multitude of diverse engineering applications as lightweight alternatives and space filling cores in sandwich structures, need for predictive yield criteria for these load bearing members under multiaxial stress states becomes critical. Although there exist several yield criteria proposed in the literature for highly porous solid foams, majority are phenomenological in nature, rely on relatively long list of model parameters that require difficult experimentation not readily available to end user, and none of them can handle the anisotropy observed in commercially available solid foams. Further, it is by now well established that, the yield behavior of highly porous solid foams is significantly influenced by the hydrostatic component of stress. In majority of phenomenological yield criteria proposed for solid foams this dependence is expressed by a quadratic pressure term.;Present study integrates analytical and computational investigation of yield behavior in solid foams along with extensive validation by experimental results. It proposes a physics based approach by hypothesizing that the yielding of stochastic foams is governed by the total elastic strain energy density, which leads to an energy based yield criterion for transversely isotropic foams providing a physical basis for the quadratic pressure dependence. Also, it introduces new scalar measures of stress and strain, which are referred to as characteristic stress and characteristic strain, that are analogous to effective (von Mises) stress and strain commonly used in analyzing the yield and post-yield behavior of bulk metals. Proposed yield criterion also renders a unique advantage by relying only on the elastic properties and uniaxial yield strengths of the material, which makes the proposed yield criterion extremely practical for end user.;Results from experimental data obtained from multiaxial testing of Divinycell H100 and H130 foams as well as extensive computational simulations performed on periodic Kelvin and stochastic Voronoi foam models (both isotropic and transversely isotropic), point out to an additional linear pressure dependence in the yield behavior of solid foams. This dependence is observed to be more pronounced at lower relative densities. A simple quantitative technique which is based on the partition of elastic strain energy into bending and stretch components is used to identify the distribution of deformation modes at microstructural level, along with its influence on load sharing as a function of stress path. Furthermore, a plasticity model that incorporates a flow rule and hardening law are presented which allows the analysis of inelastic deformations in solid foams in a continuum framework. Such models facilitate development of user defined material model (UMAT) that allow evaluating the performance of proposed yield criterion under complex loading scenarios, such as indentation and punch loading.
机译:随着蜂窝状固体作为轻质替代物和夹层结构中的空间填充核在多种多样的工程应用中的潜力不断增长,对于这些在多轴应力状态下的承重构件的预测屈服准则的需求变得至关重要。尽管在文献中针对高多孔性固体泡沫提出了几种屈服准则,但大多数准则都是现象学的,依赖于较长的模型参数列表,这些模型参数要求最终用户不易进行的困难实验,而且它们都无法处理观察到的各向异性在市售的固体泡沫中。此外,目前已经很好地确定,高度多孔的固体泡沫的屈服行为受到应力的静水压力的影响很大。在大多数针对固体泡沫的现象学屈服标准中,这种依赖性用二次压力项表示。本研究结合了对固体泡沫屈服行为的分析和计算研究,并通过实验结果进行了广泛验证。通过假设随机泡沫的屈服受总弹性应变能量密度支配,提出了一种基于物理学的方法,这为横向各向同性泡沫提供了基于能量的屈服准则,为二次压力依赖性提供了物理基础。此外,它引入了应力和应变的新标量度量,称为特征应力和特征应变,类似于通常用于分析块状金属的屈服和屈服后行为的有效(von Mises)应力和应变。提议的屈服准则还仅依赖于材料的弹性和单轴屈服强度而具有独特的优势,这使提议的屈服准则对最终用户极为实用。; Divinycell H100和H130泡沫材料多轴测试获得的实验数据以及在周期性开尔文和随机Voronoi泡沫模型(各向同性和横向各向同性)上进行的大量计算仿真指出,固体泡沫的屈服特性还存在线性压力依赖性。在较低的相对密度下,这种依赖性更加明显。一种简单的定量技术是基于弹性应变能在弯曲和拉伸分量之间的分配,用于确定变形模式在微观结构水平上的分布,以及其作为应力路径的函数对载荷分担的影响。此外,提出了结合了流动规则和硬化规律的可塑性模型,该模型可以分析连续体框架中固体泡沫的非弹性变形。这样的模型促进了用户定义材料模型(UMAT)的开发,该模型允许在复杂的加载方案(例如压痕和冲头加载)下评估建议的屈服准则的性能。

著录项

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号