首页> 外文学位 >Trk-fused Gene (TFG) Organizes the Early Secretory Pathway and Regulates Neuronal Function.
【24h】

Trk-fused Gene (TFG) Organizes the Early Secretory Pathway and Regulates Neuronal Function.

机译:Trk融合基因(TFG)组织早期分泌途径,并调节神经元功能。

获取原文
获取原文并翻译 | 示例

摘要

Roughly one third of the genes in the human genome encode transmembrane or secreted proteins which are responsible for countless functions involved in sustaining life. All of these proteins are translated at the endoplasmic reticulum (ER) where they are then trafficked to their final destinations, either inside or outside the cell. These cargo proteins are packed into coat protein II (COPII) transport carriers at ER exit sites to head towards the Golgi, to be properly processed. The formation of these vesicles is tightly regulated to properly form, traffic, and fuse with one another. While the basics of this process are understood, further mechanistic work is required. The goal of my work was to better understand the regulation of this early secretory pathway by the new modulator of COPII known as the TRK-fused gene (TFG). TFG localizes at the ER exit site and affects protein secretion. Thus, characterization of this protein will help to give a more complete understanding to the complex mechanisms as to how higher order organisms efficiently traffic cargo from the ER to the Golgi and their roles in disease.;In this thesis, I presented evidence that the R106C mutation in the coiled coil region of TFG leads to hereditary spastic paraplegia (HSP), a degenerative motor neuron disease that affects the lower extremities. Furthermore, TFG localizes down axons and is important for the suitable maintenance of ER tubules in neuronal cells, which are necessary for proper cellular function. Furthermore, I investigated TFG in human cell lines and observed that the protein localizes with COPII vesicles. Depletion of TFG disturbs COPII localization and slows the secretion of cargo through the early secretory pathway. Combining different biochemical approaches, I discovered that the N-terminus of TFG forms a cup-shaped ring-like structure and a C-terminus which interacts with one another to form the meshwork. Finally, biochemical data indicates that the R106C mutation perturbs the ring structure of TFG and leads to improper localization of the protein within the cell. This work shows the necessity of properly functioning TFG protein for cellular viability and the effect that its perturbation has on disease.
机译:人类基因组中约有三分之一的基因编码跨膜或分泌的蛋白质,这些蛋白质负责维持生命的无数功能。所有这些蛋白质都在内质网(ER)上翻译,然后被运输到细胞内部或外部的最终目的地。这些货物蛋白在ER出口处被包装到外壳蛋白II(COPII)转运载体中,朝向高尔基体进行适当加工。这些囊泡的形成受到严格调节,以正确地形成,运输和融合。虽然了解了此过程的基础知识,但仍需要进一步的机械工作。我的工作目标是通过被称为TRK融合基因(TFG)的COPII新调节剂更好地了解这种早期分泌途径的调控。 TFG位于ER出口位点并影响蛋白质分泌。因此,对该蛋白的表征将有助于更全面地了解复杂机制,以了解高级生物如何有效地将货物从ER转运到高尔基体,以及它们在疾病中的作用。 TFG的卷曲螺旋区域中的突变导致遗传性痉挛性截瘫(HSP),这是一种影响下肢的退行性运动神经元疾病。此外,TFG使轴突向下定位,并且对于神经元细胞中ER小管的适当维护非常重要,这对于正常的细胞功能是必需的。此外,我研究了人类细胞系中的TFG,并观察到该蛋白质位于COPII囊泡中。 TFG的耗尽会干扰COPII的定位,并通过早期分泌途径减慢货物的分泌。结合不同的生化方法,我发现TFG的N端形成了杯形的环状结构,而C端则互相作用形成网状结构。最后,生化数据表明,R106C突变扰乱了TFG的环结构,并导致蛋白质在细胞内的定位不正确。这项工作表明正常发挥功能的TFG蛋白对于细胞活力的必要性及其对疾病的影响。

著录项

  • 作者

    Johnson, Adam J. K.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biochemistry.;Cellular biology.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 343 p.
  • 总页数 343
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号