首页> 外文学位 >Wave chaotic experiments and models for complicated wave scattering systems.
【24h】

Wave chaotic experiments and models for complicated wave scattering systems.

机译:复杂的波散射系统的波混沌实验和模型。

获取原文
获取原文并翻译 | 示例

摘要

Wave scattering in a complicated environment is a common challenge in many engineering fields because the complexity makes exact solutions impractical to find, and the sensitivity to detail in the short-wavelength limit makes a numerical solution relevant only to a specific realization. On the other hand, wave chaos offers a statistical approach to understand the properties of complicated wave systems through the use of random matrix theory (RMT). A bridge between the theory and practical applications is the random coupling model (RCM) which connects the universal features predicted by RMT and the specific details of a real wave scattering system. The RCM gives a complete model for many wave properties and is beneficial for many physical and engineering fields that involve complicated wave scattering systems. One major contribution of this dissertation is that I have utilized three microwave systems to thoroughly test the RCM in complicated wave systems with varied loss, including a cryogenic system with a superconducting microwave cavity for testing the extremely-low-loss case. I have also experimentally tested an extension of the RCM that includes short-orbit corrections. Another novel result is development of a complete model based on the RCM for the fading phenomenon extensively studied in the wireless communication fields. This fading model encompasses the traditional fading models as its high-loss limit case and further predicts the fading statistics in the low-loss limit. This model provides the first physical explanation for the fitting parameters used in fading models. I have also applied the RCM to additional experimental wave properties of a complicated wave system, such as the impedance matrix, the scattering matrix, the variance ratio, and the thermopower. These predictions are significant for nuclear scattering, atomic physics, quantum transport in condensed matter systems, electromagnetics, acoustics, geophysics, etc.
机译:复杂环境中的波散射是许多工程领域中的常见挑战,因为复杂性使得难以找到精确的解决方案,而短波长范围内对细节的敏感性使得数值解决方案仅与特定实现相关。另一方面,波动混沌提供了一种统计方法,可以通过使用随机矩阵理论(RMT)来了解复杂波动系统的特性。理论与实际应用之间的桥梁是随机耦合模型(RCM),该模型将RMT预测的通用特征与实际波散射系统的特定细节联系起来。 RCM提供了许多波属性的完整模型,对于涉及复杂波散射系统的许多物理和工程领域都是有益的。本文的主要贡献在于,我利用三种微波系统对具有不同损耗的复杂波系统中的RCM进行了全面测试,其中包括具有超导微波腔的低温系统,用于测试极低损耗的情况。我还通过实验测试了RCM的扩展,其中包括短轨道校正。另一个新颖的结果是针对无线通信领域中广泛研究的衰落现象,开发了基于RCM的完整模型。该衰落模型将传统衰落模型包括在其高损耗极限情况下,并进一步预测了低损耗极限下的衰落统计数据。该模型为衰落模型中使用的拟合参数提供了第一个物理解释。我还将RCM应用于复杂波系统的其他实验波特性,例如阻抗矩阵,散射矩阵,方差比和热功率。这些预测对于核散射,原子物理学,凝聚态系统中的量子传输,电磁学,声学,地球物理学等意义重大。

著录项

  • 作者

    Yeh, Jen-Hao.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.;Physics Condensed Matter.;Statistics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号