首页> 外文学位 >Pseudomorphic In0.22Ga0.78As-channel MOSFETs using InAlP oxide as the gate dielectric for RF applications.
【24h】

Pseudomorphic In0.22Ga0.78As-channel MOSFETs using InAlP oxide as the gate dielectric for RF applications.

机译:使用InAlP氧化物作为RF应用的栅极介电质的准非晶In0.22Ga0.78As沟道MOSFET。

获取原文
获取原文并翻译 | 示例

摘要

In this work, wet thermal oxidation of epitaxially-grown InAlP in combination with a pseudomorphic high electron mobility In0.22Ga0.78As channel has been explored, as an alternative gate structure to conventional GaAs-based field effect transistors (FETs) as used in many radio frequency (RF) systems. This insulating metal-oxidesemiconductor (MOS) gate structure with higher effective gate potential barrier can suppress the gate leakage and extend the allowable gate voltage swing. Device structure engineering, including gate dielectric thickness and channel doping level, is shown to be able to result in heterostructure designs for both depletion-mode and enhancementmode devices. The gate oxide formation does not require any special surface passivation or post-growth gate dielectric deposition, and is minimally disruptive relative to established high electron mobility transistor (HEMT) fabrication processes. The utilized process also results in self-alignment of the gate metallization and localized oxidation region, thus reducing the access resistance and enabling high RF performance to beobtained. The devices demonstrated here exhibit record RF performance for III-V channel MOSFETs with a measured cutoff frequency, fT, of 60 GHz obtained for a gate length of 0.25 mum. Both the DC and RF performance are already comparable to commercialized pseudomorphic high electron mobility transistors (pHEMTs), while offering features that conventional technology cannot provide. Operation at high gate bias (to at least 1.5V) without significant gate leakage is demonstrated. A 3.5 nm thick InAlP oxide gate dielectric reduces the gate leakage below that of heterostructure field effect transistors (HFETs) based on the same epitaxial structure by more than 105 times. Based on a small-signal model and a two-noise-temperature model, this work also reports the microwave noise performance for III-V MOSFETs for the first time. A minimum noise figure (NFmin) of less than 1 dB at 8 GHz has been achieved by a 0.25 mum GaAs-channel MOSFET, while In0.22Ga0.78As-channel MOSFETs exhibit an NFmin about 0.5 dB higher. The results suggest these devices are potentially viable candidates for lownoise RF and microwave applications. However, despite the excellent performance obtained, the demonstrated devices do not yet exhibit the full advantages of the new gate structure and high mobility channel due to un-optimized device designs. For example, the n+ AlGaAs donor layer beneath the channel causes short-channel effects, and the un-gated oxide region also leads to significant access resistance in enhancement-mode devices only due to the "normally-off" operation. Therefore, investigation and discussion to provide directions for further device performance improvements in the future are also included.
机译:在这项工作中,已经探索了外延生长的InAlP的湿热氧化与拟态高电子迁移率In0.22Ga0.78As沟道相结合的方法,以此作为许多传统GaAs基场效应晶体管(FET)的替代栅极结构。射频(RF)系统。具有较高有效栅极电势垒的这种绝缘金属氧化物半导体(MOS)栅极结构可以抑制栅极泄漏并延长允许的栅极电压摆幅。包括栅极介电层厚度和沟道掺杂水平在内的器件结构工程显示出能够针对耗尽型和增强型器件进行异质结构设计。栅极氧化物的形成不需要任何特殊的表面钝化或生长后的栅极电介质沉积,并且相对于已建立的高电子迁移率晶体管(HEMT)的制造工艺具有最小的破坏性。所利用的过程还导致栅极金属化和局部氧化区域的自对准,从而减小了访问电阻并能够获得高RF性能。此处展示的器件展示了III-V沟道MOSFET的创纪录RF性能,其栅极长度为0.25μm时测得的截止频率fT为60 GHz。 DC和RF性能已经可以与商业化的伪形高电子迁移率晶体管(pHEMT)媲美,同时具有传统技术无法提供的功能。演示了在高栅极偏置电压(至少1.5V)下没有明显的栅极泄漏的操作。 3.5纳米厚的InAlP氧化物栅极电介质可将栅极泄漏降低到比基于相同外延结构的异质结构场效应晶体管(HFET)更低的105倍以上。基于小信号模型和两个噪声温度模型,这项工作还首次报告了III-V MOSFET的微波噪声性能。 0.25μm的GaAs沟道MOSFET在8 GHz时的最小噪声系数(NFmin)小于1 dB,而In0.22Ga0.78As沟道MOSFET的NFmin约高0.5 dB。结果表明,这些器件可能是低噪声射频和微波应用的潜在候选者。然而,尽管获得了出色的性能,但由于未优化的器件设计,所展示的器件仍未展现出新栅极结构和高迁移率通道的全部优势。例如,沟道下方的n + AlGaAs供体层会引起短沟道效应,并且仅由于“常关”操作,未门控的氧化物区域还会在增强模式器件中导致显着的访问电阻。因此,还包括进行调查和讨论,以为将来进一步改善设备性能提供指导。

著录项

  • 作者

    Xing, Xiu.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Electronics and Electrical.;Engineering General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号