首页> 外文学位 >Statistical methods for blending satellite and ground observations to improve high-resolution precipitation estimates.
【24h】

Statistical methods for blending satellite and ground observations to improve high-resolution precipitation estimates.

机译:混合卫星和地面观测以改善高分辨率降水估算的统计方法。

获取原文
获取原文并翻译 | 示例

摘要

Drought and flood management practices require accurate estimates of precipitation in space and time. However, data is sparse in regions with complicated terrain, often in valleys, and of poor quality. Consequently, extreme precipitation events are poorly represented. Satellite-derived rainfall data is an attractive alternative in such regions and is being widely used, though it too fails in representing extreme events due to its dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Thus, it seems appropriate to blend satellite-derived rainfall data of extensive spatial coverage with rain gauge data in order to provide a more robust estimate of precipitation. To this end, in this research we offer four techniques to blend rain gauge data and the Climate Hazards group InfraRed Precipitation (CHIRP) satellite-derived precipitation estimate for Central America and Colombia. In the first two methods, the gauge data is assigned to the closest CHIRP grid point, where the error is defined as r(s) = Yobs(s) - Ysat(s). The spatial structure of r(s) is then modeled using physiographic information (easting, northing, and elevation) by two methods (i) a traditional Co-kriging approach which utilizes a variogram that is calculated in Euclidean space and (ii) a nonparametric method based on local polynomial functional estimation. The models are used to estimate r at all grid points, which is then added to the CHIRP, thus creating an improved satellite estimate. We demonstrate these methods by applying them to pentadal and monthly total precipitation fields during 2009. The models' predictive abilities and their ability to capture extremes are investigated. These blending methods significantly improve upon the satellite-derived estimates and are also competitive in their ability to capture extreme precipitation. The above methods assume satellite-derived precipitation to be unbiased estimates of gauge precipitation, which is far from being the case. Thus the third method, Bayesian Hierarchical Modeling (BHM), is offered. In this approach, first, the gauge observations are modeled as a function of satellite-derived estimates and other variables such as elevation (the satellite estimate coefficient is in effect a bias correction factor). The residual from this first hierarchical model is then subjected to a spatial kriging model. The posterior distributions of all the model parameters are estimated simultaneously in Markov Chain Monte Carlo framework -- consequently, the posterior distributions and uncertainties of the blended precipitation estimates are attained. This approach provides a robust treatment of the uncertainties and the hierarchy enables incorporating all relevant covariates. While the BHM provides a robust confidence interval of the bias correction factor for CHIRP, it is reasonable to assume this bias is not uniform over the domain. Therefore a fourth method is proposed, wherein a GLM is fit to the time series at each point (Yobs(s,t) = beta(s) Ysat(s,t) + epsilon(s,t)), and the satellite coefficients are interpolated using a Co-kriging model similar to the first two methods. This provides a unique bias correction factor for every time frame (pentad, month), and therefore may be applied in near-real-time. To obtain the error field (i.e. residuals epsilon(s,t)) for a specific time frame t, the residuals corresponding to the appropriate time frame are extracted from the GLMs and interpolated, again using a physiographic Co-kriging model. These blended products provide more accurate and representative initial conditions for hydrologic modeling applications that are crucial for modeling and mitigating impacts from climate hazards such as floods and landslides which are of major concern in this region.
机译:干旱和洪水管理实践要求准确估算时空降水。但是,在地形复杂的地区(通常在山谷中)且质量较差的地区,数据稀疏。因此,极少发生的极端降水事件。在这些地区,源自卫星的降雨数据是一种有吸引力的替代方法,并且已被广泛使用,尽管由于它依赖于检索算法以及卫星红外观测值与降水强度之间的间接关系,也无法表示极端事件。因此,似乎有必要将大范围空间覆盖范围的卫星衍生降雨数据与雨量计数据相融合,以便提供更可靠的降雨估计。为此,在这项研究中,我们提供了四种技术来混合雨量计数据和气候危害小组的中美洲和哥伦比亚的红外降水(CHIRP)卫星降水估计。在前两种方法中,将量规数据分配给最接近的CHIRP网格点,其中误差定义为r(s)= Yobs(s)-Ysat(s)。然后使用生理信息(东,北和高程)通过两种方法对r(s)的空间结构进行建模:(i)一种传统的协同克里格方法,该方法利用了在欧几里得空间中计算出的变异函数;(ii)一种非参数方法基于局部多项式函数估计的方法。这些模型用于估计所有网格点的r,然后将其添加到CHIRP中,从而创建了改进的卫星估计。我们通过将这些方法应用于2009年的五月和月降水总量场来论证这些方法。对模型的预测能力及其捕获极端事件的能力进行了研究。这些混合方法大大改进了卫星推导的估计,并且在捕获极端降水的能力方面也具有竞争力。上述方法假定来自卫星的降水是标准降水的无偏估计,但事实并非如此。因此,提供了第三种方法贝叶斯层次建模(BHM)。在这种方法中,首先,将轨距观测值建模为卫星得出的估计值和其他变量(例如海拔)的函数(卫星估计系数实际上是偏差校正因子)。然后,将来自该第一层次模型的残差进行空间克里金模型。在马尔可夫链蒙特卡洛框架中同时估算所有模型参数的后验分布-因此,获得了混合降水估算的后验分布和不确定性。这种方法提供了对不确定性的可靠处理,并且层次结构使合并所有相关的协变量成为可能。尽管BHM为CHIRP提供了偏差校正因子的鲁棒置信区间,但可以合理地假设该偏差在整个域内不均匀。因此,提出了第四种方法,其中将GLM拟合到每个点的时间序列(Yobs(s,t)= beta(s)Ysat(s,t)+ epsilon(s,t)),以及卫星系数使用类似于前两种方法的共同克里金模型对数据进行插值。这为每个时间帧(五单元格,月份)提供了唯一的偏差校正因子,因此可以近实时应用。为了获得特定时间帧t的误差字段(即,残差ε,t),再次使用生理学共同克里金模型从GLM中提取与适当时间帧相对应的残差并进行插值。这些混合产品为水文建模应用程序提供了更准确,更具代表性的初始条件,这对于建模和缓解来自该地区主要关注的气候灾害(如洪水和山崩)的影响至关重要。

著录项

  • 作者

    Verdin, Andrew P.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering General.;Geography.;Hydrology.
  • 学位 M.S.
  • 年度 2013
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号