首页> 外文学位 >Criticality and characteristic neutronic analysis of a transient-state shockwave in a pulsed spherical gaseous uranium-hexafluoride reactor.
【24h】

Criticality and characteristic neutronic analysis of a transient-state shockwave in a pulsed spherical gaseous uranium-hexafluoride reactor.

机译:脉冲球形气态六氟化铀反应堆中瞬态冲击波的临界度和特征中子分析。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to analyze the theoretical criticality of a spherical uranium-hexafluoride reactor with a transient, pulsed shockwave emanating from the center of the sphere in an outward-radial direction. This novel nuclear reactor design, based upon pulsed fission in a spherical enclosure is proposed for possible use in direct energy conversion, where the energy from fission products is captured through the use of electrostatic fields or through induction. An analysis of the dynamic behavior of the shockwave in this reactor is the subject of this thesis. As a shockwave travels through a fluid medium, the characteristics of the medium will change across the shockwave boundary. Pressure, temperature, and density are all affected by the shockwave. Changes in these parameters will affect the neutronic characteristics of a fissile medium. If the system is initially in a subcritical state, the increases in pressure, temperature, and density, all brought about by the introduction of the shockwave, will increase the reactivity of the nuclear system, creating a brief super critical state that will return to a subcritical state after the shockwave dissipates.;Two major problems are required to be solved for this system. One is the effects of the shockwave on the gas, and the second is the resulting effects on system criticality. These problems are coupled due to the unique nature of the speed of the expanding shockwave in the uranium-hexafluoride medium and the energy imparted to the system by the shockwave with respect to the fissile uranium-hexafluoride. Using compressible flow and shockwave theories, this study determines the properties of the gaseous medium for reference points before, during, and behind the shockwave as it passes through the fissile medium. These properties include pressure changes, temperature changes, and density changes that occur to the system. Using the parameters calculated from the shockwave, the neutron transport equation is solved with the appropriate boundary conditions to identify system criticality, neutron flux, and the appropriate changes to system variables such as buckling, and migration length. The analytical solution is then verified using MCNPX, a Monte Carlo method for computational analysis of the neutron transport equation. Through manipulation of the initial pressure of the system, which is intrinsically linked to the density of the system by the ideal gas Equation of State, neutron and flux multiplication trends are corroborated.;The results show that both compressible flow theory and shockwave theory are in relatively close agreement for parameter changes across, after, and along the shockwave expansion. The solution to the analytical transport equation is in good agreement with the results from MCNPX. The change in the effective multiplication factor is similar between both the analytical solution and the computational solution. Furthermore, a new method for determining the transient effective multiplication factor is devised. These results show the maximum criticality of the reactor is at the initiation of the shockwave. The shockwave creates a local supercriticality until the wave dissipates below Mach 1.;Several tools and methods are employed in this study, including the use of Monte Carlo numerical methods, Euler method solutions, and computer programs, such as MCNP, MATLAB, and Mathcad, which provide necessary the necessary computational abilities to understand the mathematical model of the system.
机译:这项研究的目的是分析球形六氟化铀反应器的理论临界性,该反应器具有从球体中心向径向向外发射的瞬态脉冲冲击波。提出了一种基于球形外壳中脉冲裂变的新颖核反应堆设计,可用于直接能量转换,其中裂变产物的能量通过使用静电场或感应来捕获。对反应堆中冲击波的动态行为进行分析是本文的主题。当冲击波传播通过流体介质时,介质的特性将在冲击波边界上发生变化。压力,温度和密度都受到冲击波的影响。这些参数的变化将影响裂变介质的中子学特性。如果系统最初处于亚临界状态,则由于冲击波的引入而引起的压力,温度和密度的增加,将增加核系统的反应性,从而产生短暂的超临界状态,该状态将返回到超临界状态。冲击波消散后达到亚临界状态。该系统需要解决两个主要问题。一是冲击波对气体的影响,二是对系统临界性的影响。由于六氟化铀介质中膨胀的冲击波的速度的独特性质,以及由于冲击波相对于易裂变的六氟化铀,由冲击波赋予系统的能量,这些问题是相关的。利用可压缩流动和冲击波理论,这项研究确定了气态介质在穿过裂变介质之前,之中和之后的参考点的特性。这些属性包括系统发生的压力变化,温度变化和密度变化。使用从冲击波计算出的参数,以适当的边界条件求解中子输运方程,以识别系统临界度,中子通量以及系统变量的适当变化(例如屈曲和迁移长度)。然后使用MCNPX(一种用于对中子输运方程进行计算分析的蒙特卡洛方法)验证该解析解。通过控制系统的初始压力(通过理想的气体状态方程与系统的密度内在联系),可以证实中子和通量的乘积趋势。结果表明,可压缩流动理论和冲击波理论都在研究中。在整个冲击波扩展过程中,之后以及沿着该过程,参数变化的关系都比较接近。解析输运方程的解与MCNPX的结果非常吻合。在分析解决方案和计算解决方案之间,有效乘法因子的变化是相似的。此外,设计了一种用于确定瞬时有效乘数的新方法。这些结果表明,反应堆的最大临界点是在冲击波开始时。冲击波会产生局部超临界,直到波消散到1马赫以下;本研究采用了几种工具和方法,包括使用蒙特卡洛数值方法,欧拉方法解以及计算机程序,例如MCNP,MATLAB和Mathcad ,提供必要的计算能力以了解系统的数学模型。

著录项

  • 作者

    Boles, Jeremiah Thomas.;

  • 作者单位

    University of Nevada, Las Vegas.;

  • 授予单位 University of Nevada, Las Vegas.;
  • 学科 Engineering Nuclear.;Physics Radiation.
  • 学位 M.S.
  • 年度 2013
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号