首页> 外文学位 >Synthesis and electrochemical study of palladium-based nanomaterials for green energy applications.
【24h】

Synthesis and electrochemical study of palladium-based nanomaterials for green energy applications.

机译:绿色能源应用中钯基纳米材料的合成与电化学研究。

获取原文
获取原文并翻译 | 示例

摘要

Rising global energy consumption leads to increased environmental impacts. The continued use of current energy resources, e.g. fossil fuels, will exaggerate the cumulative nature of CO2 byproduct emissions in the atmosphere. The development and implementation of a hydrogen economy, as a solution to offset degradative environmental impacts, will likely enable opportunities for maintaining or improving standards of living while significantly lowering carbon emissions. Palladium has proven to be a strong contender as an enabling material that encompasses many aspects of a prospective hydrogen economy, lending promise to applications such as hydrogen purification, storage and fuel cell catalysis. In my M.Sc. study, Pd-based nanomaterials have been synthesized and examined for their applications in hydrogen storage and fuel cell catalysis. The surface properties of synthesized Pd-based nanomaterials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), and N2 gas adsorption/desorption. Electrochemical analysis of the fabricated materials was performed using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was employed to characterize the composition of the formed samples. Hydrogen electrosorption onto activated carbon materials modified with different trimetallic dissociation catalysts (Pd-Ag-Cd) was investigated in an acidic medium. A uniform distribution of the Pd-Ag-Cd catalysts was achieved using a facile room temperature sodium borohydride reduction method. By varying the composition of the alloys, synergistic effects between the metal and carbon support resulted in drastic increases in hydrogen sorption capabilities in contrast to bi-metallic PdAg and PdCd catalysts. Utilizing electrochemical methods, the optimal composition of the Pd-Ag-Cd alloys was determined to be Pd80Ag10Cd10, with the highest hydrogen sorption capacity at a hydrogen desorption charge of 18.49 C/cm2˙mg. Further enhancement of the electroactivity of synthesized titanium dioxide nanotubes (TiO2 NTs) was achieved using UV light and electrochemical pretreatment methods. The effects of these pretreatment methods on TiO2 NTs were systematically investigated and compared. Using Pd as a dispersed catalyst, Pd/TiO2 NT electrodes were examined in acidic medium, with both UV and electrochemical pretreatment methods revealing significant enhancements in the electroactivity of the TiO2 NT substrate. The UV pretreated samples were found to dominate, when compared to those that underwent electrochemical pretreatment, in terms of overall efficacy for hydrogen sorption and the electrooxidation of formic acid. Improvements in nanotube conductivity resulted in an effective reduction of noble metal coating loads. Nanostructured PdPb electrocatalysts were loaded directly onto TiO2 NT substrates and tested for their activity towards formic acid oxidation. Comparative studies revealed the enhanced electrochemical oxidation of formic acid on Pd95Pb5/TiO2 NTs in comparison to Pd/TiO2 NTs, resulting in the successful reduction of Pd noble metal load. The work performed in this M. Sc. thesis project reveals that modifications to both Pd catalysts and their associated supports can drastically alter their geometric and electronic properties. This has a major influence on the development of more cost effective materials with enhanced activity for use towards the commercialization of fuel cells.
机译:全球能源消耗的增加导致环境影响的增加。继续使用当前的能源资源,例如化石燃料将夸大大气中二氧化碳副产物排放的累积性质。氢经济的发展和实施,作为抵消对环境造成的破坏的解决方案,将有可能为维持或改善生活水平,同时显着降低碳排放量提供机会。钯金已被证明是一种有力的竞争者,它是涵盖潜在氢经济许多方面的使能材料,为氢净化,存储和燃料电池催化等应用提供了希望。在我的硕士这项研究已经合成了基于钯的纳米材料,并研究了其在储氢和燃料电池催化中的应用。通过扫描电子显微镜(SEM),透射电子显微镜(TEM),能量色散X射线光谱(EDS),X射线衍射(XRD),X射线光电子能谱(PDS)对合成的Pd基纳米材料的表面性能进行了表征( XPS)和氮气吸附/解吸。使用循环伏安法(CV),线性扫描伏安法(LSV),计时电流法(CA)和电化学阻抗谱(EIS)对制成的材料进行电化学分析。电感耦合等离子体原子发射光谱法(ICP-AES)用于表征所形成样品的组成。在酸性介质中研究了氢在吸附有不同三金属离解催化剂(Pd-Ag-Cd)的活性炭材料上的电吸附。使用方便的室温氢硼化钠还原法可实现Pd-Ag-Cd催化剂的均匀分布。通过改变合金的成分,与双金属PdAg和PdCd催化剂相比,金属和碳载体之间的协同作用导致氢吸附能力的急剧增加。利用电化学方法,确定Pd-Ag-Cd合金的最佳组成为Pd80Ag10Cd10,在18.49C / cm2·mg的氢解吸电荷下具有最高的氢吸附能力。使用紫外线和电化学预处理方法可以进一步提高合成的二氧化钛纳米管(TiO2 NTs)的电活性。系统地研究和比较了这些预处理方法对TiO2 NTs的影响。使用Pd作为分散催化剂,在酸性介质中检查了Pd / TiO2 NT电极,采用紫外线和电化学预处理方法均显示出TiO2 NT基材电活性的显着提高。与经过电化学预处理的样品相比,经紫外线预处理的样品在氢吸收和甲酸的电氧化总体功效方面占主导地位。纳米管电导率的改善导致有效降低了贵金属涂层的负荷。将纳米结构的PdPb电催化剂直接负载到TiO2 NT基底上,并测试其对甲酸氧化的活性。对比研究表明,与Pd / TiO2 NTs相比,Pd95Pb5 / TiO2 NTs上甲酸的电化学氧化作用增强,从而成功降低了Pd贵金属负载。在本硕士课程中进行的工作。论文项目表明,对Pd催化剂及其相关载体的改性可以大大改变其几何和电子性能。这对开发更具成本效益的,具有增强活性的材料以用于燃料电池的商业化具有重大影响。

著录项

  • 作者

    Ostrom, Cassandra K.;

  • 作者单位

    Lakehead University (Canada).;

  • 授予单位 Lakehead University (Canada).;
  • 学科 Chemistry General.;Engineering Materials Science.;Chemistry Analytical.;Chemistry Inorganic.
  • 学位 M.S.
  • 年度 2013
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号