首页> 外文学位 >Nanoscopic analyses: Single molecule characterization in molecular electronics and surface science.
【24h】

Nanoscopic analyses: Single molecule characterization in molecular electronics and surface science.

机译:纳米分析:分子电子学和表面科学中的单分子表征。

获取原文
获取原文并翻译 | 示例

摘要

Time-resolved scanning tunneling microscope (STM) measurements of single molecules are used to determine the behavior and interactions of adsorbed species. This thesis describes the custom design of the scanning tunneling microscope hardware and software used to acquire molecular-resolution images. Using this instrument, two systems are characterized: the conductance switching of oligo (phenylene-ethynylene) (OPE) molecules inserted in n-alkanethiolate self-assembled monolayers (SAMs), and the motion of benzene adsorbed on Au{111} at 4 K. For both systems, the use of digital image processing was applied to the analysis of time-resolved sequential images to determine changes in topographic features or overlayer structure. From these analyses we can determine the mechanism for conductance switching and quantify the weak adsorbate-adsorbate substrate-mediated interactions present in benzene overlayers. These types of analyses must be executed at the single molecule level, as no ensemble technique can observe the discrete, heterogenious behaviors observed by STM in these systems.;One of the ultimate miniaturizations in nanotechnology is molecular electronics, where electronic devices will potentially consist of individual molecules. Some of the molecules being investigated for application in molecular electronics are a family of OPE molecules. Ensemble measurements of these molecules have yielded hysteretic switching and negative differential resistance, both useful properties that enable memory and logic operations. We investigate these systems by inserting the molecule of interest in an inert SAM to isolate single molecules, probing each molecule with the STM tip on a single-molecule basis. We acquire time-resolved sequences of STM images over periods of up to several days or acquire real-time measurements at a rate of 10 kHz for 15 seconds, and observe that these molecules exhibit conductance switching such that their apparent height changes. Due to properties of the materials used to acquire STM images, the field of view may drift. A digital image tracking algorithm based on Fourier transform cross-correlation has been developed to correct for instrumental drift in STM images. Analyzing the apparent height of different molecules in variable SAM matrices as a function of time has enabled us to propose that conductance switching is the result of hybridization and/or conformational changes at the metal-molecule interface.;Using similar analyses, we have applied scanning tunneling microscopy to probe and to quantify the weak substrate-mediated interactions in benzene overlayers on Au{111} at 4 K. We observe that benzene molecules exhibit three types of motion, including 2D desorption, 2D adsorption, and simultaneous dislocations of many molecules (molecular cascades). Correlating the probability of 2D desorption with the number of nearest neighbors of the desorbing molecules enables the calculation of the magnitude of the adsorbate-adsorbate substrate-mediated interactions. We also observe chains of up to 12 molecules simultaneously moving in the same direction at the same time in an event we refer to as molecular cascades. These cascades are the result of translation of the overlayer structure and are highly correlated with 2D desorption and 2D adsorption.
机译:时间分辨扫描隧道显微镜(STM)对单个分子的测量用于确定吸附物质的行为和相互作用。本文描述了用于获取分子分辨率图像的扫描隧道显微镜硬件和软件的定制设计。使用该仪器,可以表征两个系统:插入正链烷硫醇自组装单分子膜(SAMs)中的低聚(亚苯基-乙炔)(OPE)分子的电导转换,以及4 K下吸附在Au {111}上的苯的运动对于这两个系统,都将数字图像处理的使用应用于时间分辨顺序图像的分析,以确定地形特征或覆盖层结构的变化。从这些分析中,我们可以确定电导转换的机制,并量化存在于苯覆盖物中的弱吸附物-吸附物底物介导的相互作用。这些类型的分析必须在单分子水平上执行,因为没有集成技术可以观察到STM在这些系统中观察到的离散的,异质的行为;纳米技术中的最终微型化之一是分子电子学,其中电子设备可能包括单个分子。正在研究用于分子电子学的一些分子是OPE分子家族。这些分子的整体测量产生了滞后转换和负差分电阻,这两种有用的特性均可实现存储器和逻辑运算。我们通过将目标分子插入惰性SAM中以分离单个分子,并在单分子基础上用STM探针探测每个分子,来研究这些系统。我们在长达几天的时间内获取时间分辨的STM图像序列,或以10 kHz的速率进行15秒的实时测量,并观察到这些分子表现出电导率切换,从而其表观高度发生了变化。由于用于获取STM图像的材料的特性,视野可能会漂移。已经开发出一种基于傅立叶变换互相关的数字图像跟踪算法,以校正STM图像中的仪器漂移。分析随时间变化的SAM矩阵中不同分子的表观高度,使我们提出电导转换是金属-分子界面上杂交和/或构象变化的结果。;使用类似的分析,我们应用了扫描隧道显微镜以探测和定量在4 K下Au {111}上苯覆盖物中弱的底物介导的相互作用。我们观察到苯分子表现出三种类型的运动,包括2D解吸,2D吸附和许多分子的同时位错(分子级联)。将二维解吸的概率与解吸分子的最邻近分子的数量相关联,可以计算被吸附物-被吸附物底物介导的相互作用的幅度。在我们称为分子级联的情况下,我们还观察到多达12个分子的链同时在同一方向上同时移动。这些级联是覆盖层结构平移的结果,并且与2D解吸和2D吸附高度相关。

著录项

  • 作者

    Mantooth, Brent Allen.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemistry Analytical.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号