首页> 外文学位 >Photoexcitation mechanisms of the green defect emission from zinc and sulfur doped zinc oxide phosphor powders through measurement and analysis of optical properties and characterization.
【24h】

Photoexcitation mechanisms of the green defect emission from zinc and sulfur doped zinc oxide phosphor powders through measurement and analysis of optical properties and characterization.

机译:通过测量和分析光学性质以及表征,从锌和硫掺杂的氧化锌磷光体粉末中发射出绿色缺陷的光激发机理。

获取原文
获取原文并翻译 | 示例

摘要

The mechanism for defect related green emission from zinc (ZnO:Zn) and sulfur doped ZnO (ZnO:S) are determined through optical characterization of the green and UV emission bands. ZnO:Zn is prepared by heating ZnO in a slightly reducing atmosphere for 1 hour and sulfur doped ZnO is similarly obtained with a small amount of sulfur added. Photoluminescence (PL), photoluminescence excitation spectra (PLE), and quantum efficiency measurements are analyzed to determine the mechanism of the green defect emission. Low temperature PL and PLE measurements are used to assign activation energies to the emission processes and connect them with donor bound excitons in ZnO. It was determined that both ZnO:Zn and ZnO:S have a similar green emission mechanism. This common mechanism involves the formation of donor bound excitons I 3a and I9, which were determined to be the mediators between photoexcitation of excitons and the transfer of energy to the defect responsible for green emission. The most efficient excitation processes for both the green and band edge emissions at low temperatures is through direct excitation of the neutral donor bound exciton I 9 or by ionizing the neutral donor bound exciton I 3a. The ionization of I3a eliminates this exciton localization site and simultaneously creates a bound exciton at I9. The I9 bound exciton can then either transfer energy to the defect responsible for the green emission or contribute to the free exciton population through a phonon assisted transition. At room temperature a resonant absorption peak associated with I9 is still present in the absorption band for ZnO:Zn suggesting partial localization at I3a and I9 of free excitons with low kinetic energy (excitations below the band gap) continues to be the intermediate between excitons and the energy transfer to the green emitting defect.;In ZnO:S, the addition of sulfur creates ZnS domains within the lattice leading to a type II band alignment at the interface of ZnO and ZnS domains. This band alignment at the interface increases the density of free electrons in ZnO, which may then encounter an ionized I3a site converting it to its neutral form. Increasing the density of free electrons, a result of the type II band alignment, increases the chances of returning an ionized I3a to its neutral form and thus increases the green emission. These results can lead to informed optimization of ZnO:S as a potential white light emitting phosphor.
机译:通过对绿色和紫外发射带进行光学表征,确定了与锌相关的绿色缺陷发射机理(ZnO:Zn)和硫掺杂的ZnO(ZnO:S)。通过在稍微还原的气氛中加热ZnO 1小时来制备ZnO:Zn,类似地,通过添加少量的硫获得掺硫的ZnO。分析了光致发光(PL),光致发光激发光谱(PLE)和量子效率测量结果,以确定绿色缺陷发射的机理。低温PL和PLE测量用于将激活能分配给发射过程,并将其与ZnO中供体结合的激子相连。可以确定ZnO:Zn和ZnO:S都具有相似的绿色发射机理。此共同机制涉及形成供体结合的激子I 3a和I9,激子I 3a和I9被确定为激子光激发与能量转移到负责绿色发射的缺陷之间的介体。在低温下,绿色和频带边缘发射的最有效激发过程是通过直接激发中性供体结合的激子I 9或使中性施主结合的激子I 3a电离。 I3a的电离消除了该激子定位位点,并同时在I9处创建了一个受激激子。然后,受I9约束的激子可以将能量转移到负责绿色发射的缺陷中,或者通过声子辅助的跃迁贡献给自由激子。在室温下,ZnO:Zn的吸收带中仍存在与I9相关的共振吸收峰,这表明具有低动能的自由激子在I3a和I9局部定位(带隙以下的激发)仍然是激子与Zn之间的中间。在ZnO:S中,硫的添加会在晶格内形成ZnS域,从而导致ZnO和ZnS域界面处的II型能带排列。界面处的这种能带排列增加了ZnO中自由电子的密度,然后它可能会遇到一个离子化的I3a位点,从而将其转换为中性形式。 II型能带对准的结果是,增加自由电子的密度会增加使离子化的I3a返回其中性形式的机会,从而增加绿色发射。这些结果可导致将ZnO:S作为潜在的发白光磷光体进行合理的优化。

著录项

  • 作者

    Simmons, Jay Gould, Jr.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号