首页> 外文学位 >Development of microfluidic devices for biological analyses and energy applications.
【24h】

Development of microfluidic devices for biological analyses and energy applications.

机译:开发用于生物学分析和能源应用的微流体装置。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidics deals with the behavior and manipulation of fluids within geometrically constrained structures with dimensions of typically sub-micrometer scale. Such a small microfluidic system can be easily customized by applying micro-/nanofabrication methods, and its ability to function with small inputs of sample and energy may lead to the development of fundamentally new analysis platforms with significantly superior performance compared to traditional ones. The main goal of this dissertation work was to understand some unique microfluidic features and apply the acquired knowledge to developing novel devices that improve our ability to perform biological analyses and designing more efficient portable electrical power sources. More specifically, this dissertation research has been focused in three major areas which involve designing microfluidic pumps, developing chip-based enzyme-linked immunosorbent assays (ELISAs) and exploiting nanofluidic transport phenomenon to generate electrical energy. The use of external pumps for implementing pressure-driven separation on microfluidic systems often leads to poor performance due to limited dynamic control over the transport of fluid and analyte samples. To address this issue, we fabricated a micro-pump inside of the device and demonstrated chromatographic separations under pressure-driven conditions using the integrated micro-pump. The application of microfluidic approaches to enhancing the sensitivity of enzyme-linked immunosorbent assays (ELISA) is another research area that we have investigated. ELISA is the standard laboratory technique employed in bio-medical fields for the identification and quantitation of particular antigens or antibodies. By utilizing a microfluidic platform, we were able to significantly improve its performance through pre-concentration of analyte molecules in a nanoliter-sized detection region. Reduction in sample volume requirement for this assay was also accomplished in a different project by assaying multiple target molecules in a single channel using the same enzyme label/substrate. In addition, while fluorescence measurements are most commonly used for quantitating microfluidic assays, we developed a new device that allowed absorbance measurement in an ELISA process using a commercial plate reader. The small optical path length for these measurements was increased by fabricating mirror layers on the device that reflected the incident light multiple times inside the channel. As the last microfluidic ELISA application, we explored the possibility of employing a commercial desktop scanner for quantitating the ELISA signal. Our findings may lead to realize portable and more affordable assay platforms. The final microfluidic research area that we have studied is the generation of electrical power through the use of fluid flow in a micro-/nanoscale channel. While the basic concept behind such a device has been previously demonstrated, we have looked at the possibility of realizing higher energy efficiencies using micro-/nanochannel junctions and capillary flows.
机译:微流体技术处理尺寸通常为亚微米级的几何约束结构内的流体的行为和操纵。这样的小型微流体系统可以通过应用微/纳米加工方法轻松定制,并且其以少量样品和能量投入运行的能力可能会导致开发出性能比传统方法明显优越的根本上新的分析平台。论文工作的主要目的是了解一些独特的微流体特征,并将所学到的知识用于开发新颖的设备,以提高我们进行生物学分析和设计更高效的便携式电源的能力。更具体地说,本论文的研究集中在三个主要领域,涉及设计微流体泵,开发基于芯片的酶联免疫吸附测定(ELISA)以及利用纳米流体传输现象来产生电能。由于对流体和分析物样品传输的动态控制有限,使用外部泵在微流体系统上执行压力驱动的分离通常会导致性能不佳。为了解决这个问题,我们在设备内部制造了一个微型泵,并使用集成的微型泵在压力驱动条件下演示了色谱分离。应用微流体方法提高酶联免疫吸附测定(ELISA)的灵敏度是我们研究的另一个研究领域。 ELISA是生物医学领域中用于鉴定和定量特定抗原或抗体的标准实验室技术。通过利用微流体平台,我们能够通过在纳升大小的检测区域中预浓缩分析物分子来显着提高其性能。通过使用相同的酶标记/底物在单个通道中测定多个靶分子,还可以在不同的项目中实现该测定所需样品量的减少。此外,虽然荧光测量最常用于定量微流体分析,但我们开发了一种新设备,该设备可使用商用酶标仪在ELISA过程中进行吸光度测量。通过在设备上制造可在通道内部多次反射入射光的反射镜层,可以增加用于这些测量的较小的光程长度。作为最后的微流ELISA应用程序,我们探索了使用商用台式扫描仪定量ELISA信号的可能性。我们的发现可能会导致实现便携式且价格更便宜的测定平台。我们研究的最终微流体研究领域是通过使用微/纳米级通道中的流体流动来产生电能。尽管先前已演示了这种设备的基本概念,但我们已经研究了使用微/纳米通道结和毛细管流实现更高能量效率的可能性。

著录项

  • 作者

    Yanagisawa, Naoki.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Chemistry General.;Chemistry Analytical.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号