首页> 外文学位 >Adsorption of noble gases on individual suspended single-walled carbon nanotubes.
【24h】

Adsorption of noble gases on individual suspended single-walled carbon nanotubes.

机译:稀有气体在单个悬浮的单壁碳纳米管上的吸附。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this work is a study of the adsorption of noble gases on individual, suspended, single-walled carbon nanotubes (SWNTs). The surface of a SWNT is a cylindrical cousin of graphite, but the binding energy is smaller and the cylindrical geometry and lack of grain boundaries could be expected to lead to substantially different behavior. The coverage (areal density) on a nanotube can be measured with high precision from the mechanical resonance frequency shifts, yielding isotherms as a function of gas pressure analogous to volumetric isotherms on bulk substrates. The electrical conductance of the nanotubes can also be measured at the same time and the effects of the adsorbates on the conductance thereby investigated.;We found that adsorbed noble gases form monolayers on SWNTs, analogous to those on conventional 2-dimensional (2D) substrates, with a variety of 2D phases as a result of atom-atom interactions. Based on a combination of the coverage and conductance isotherms, the behavior of the adsorbates on SWNTs was established, including the 2D phases, 2D critical and triple-point temperatures, binding energies, isosteric heats, and latent heats.;The majority of measurements were on Ar and Kr, fewer on 4He and Xe. The binding energy of the noble gases on a SWNT was found to be lower than on graphite, as anticipated. For example, the binding energy for Ar on one device was about 725 K +/- 50 K, about 30% lower than graphite. The lower binding energy allows isotherm measurements at lower temperatures compared because the required pressure are higher. In all cases we found that only a single atomic layer is formed before reaching the saturated vapor pressure of the adsorbate.;Remarkably, although the binding energies of Ar were consistent between multiple SWNTs, the adsorbates on different devices did not behave in the same way. The device can be classified into two classes. Those in Class I show sharp first-order transitions between 2D phases, very similar to those on graphite, and the maximum monolayer coverage on SWNTs is consistent with that on graphite taking into account the radius of nanotube. Large and sharp risers at constant pressures in the coverage or conductance isotherms indicate the 2D liquid-vapor or commensurate solid-vapor conversion. Small and smoother risers following the large ones in the isotherms indicate the 2D incommensurate solid-liquid phase transitions. In contrast, devices in Class II do not show clear phase transitions, have non-vertical isotherms in regions where first-order jumps would be expected, and the monolayers seem to be not complete when the saturated vapor pressure is reached. The difference in isosteric heat between devices of the two classes within the region where the first-order transition is expected, may be due to the 2D L-V latent heat. The existence of the two different classes of behavior remains puzzling. It appears that in class II nanotubes the effects of atom-atom attractive interactions are suppressed, due possibly either to geometrical effects or the different electrical properties of different nanotube species.
机译:这项工作的重点是研究稀有气体在单个,悬浮的单壁碳纳米管(SWNT)上的吸附。 SWNT的表面是石墨的圆柱形表亲,但结合能较小,并且圆柱形几何形状和缺乏晶界可望导致实质上不同的行为。纳米管上的覆盖率(面密度)可以根据机械共振频率的变化进行高精度测量,产生的等温线是气体压力的函数,类似于大体积基板上的体积等温线。还可以同时测量纳米管的电导率,从而研究被吸附物对电导率的影响。;我们发现,吸附的稀有气体在单壁碳纳米管上形成单层,类似于常规二维(2D)衬底上的单层由于原子-原子相互作用而具有多种2D相。基于覆盖率和电导等温线的组合,确定了吸附物在单壁碳纳米管上的行为,包括2D相,2D临界和三点温度,结合能,等位热和潜热;大多数测量是在Ar和Kr上,在4He和Xe上更少。如所预期的,发现稀有气体在SWNT上的结合能低于在石墨上的结合能。例如,一个装置上的Ar结合能约为725 K +/- 50 K,比石墨低约30%。与较低的结合能相比,由于所需压力较高,因此可以在较低温度下进行等温线测量。在所有情况下,我们发现在达到被吸附物的饱和蒸气压之前仅形成一个原子层。;值得注意的是,尽管Ar在多个单壁碳纳米管之间的结合能是一致的,但不同器件上的被吸附物的行为并不相同。该设备可以分为两类。 I类中的那些表现出2D相之间的急剧的一阶跃迁,这与石墨上的非常相似,并且考虑到纳米管的半径,SWNT上的最大单层覆盖率与石墨上的最大单层覆盖率是一致的。在覆盖率或电导等温线中处于恒定压力下的大而尖的立管表明二维液体-蒸汽或相应的固体-蒸汽转化率。等温线中较大的小而平滑的立管表示二维固液相变不等价。相比之下,II类设备没有显示清晰的相变,在可能会发生一阶跃变的区域中具有非垂直等温线,并且当达到饱和蒸气压时,单层似乎不完整。在预期一阶跃迁的区域内,两类器件之间的等规热差异可能是由于2D L-V潜热引起的。两种不同类别的行为的存在仍然令人困惑。似乎在II类纳米管中,可能是由于几何效应或不同纳米管种类的不同电特性所致,原子-原子吸引相互作用的作用被抑制了。

著录项

  • 作者

    Lee, Hao-Chun.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Physics Low Temperature.;Physics Condensed Matter.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号