首页> 外文学位 >Modeling and simulation of titanium dioxide nanoparticle formation and growth in turbulent reacting flows.
【24h】

Modeling and simulation of titanium dioxide nanoparticle formation and growth in turbulent reacting flows.

机译:湍流反应流中二氧化钛纳米粒子形成和生长的建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

The formation and growth of nanoparticles is of great scientific, industrial, and environmental interest. Nanoparticles have unique properties. These properties are primarily due to their size and surface-area-to-volume ratios. As a result nanoparticles are often the building-blocks to nano-structured materials. One such material is titanium dioxide, or titania. Titania appears in many industrial applications such as pigments, photo-catalysts and opacifiers. In this work, titania formation and growth in turbulent reacting flows are investigated via direct numerical simulations (DNS). DNS is unique in that it has the ability to provide solutions to the governing equations in a model-free manner. That is without the use of "turbulence" models and other assumptions which may reduce the fidelity of the obtained solution(s) with real world physics. In this work, all simulations are obtained by solving the fluid, thermal, and chemical fields as a function of space and time. This is accomplished by solving the Navier-Stokes equations along with the species mass fraction evolution equations. A nodal approach, which divides the particle field into three classes - monomers, clusters and particles - is used to represent the formation and growth of the nanoparticles, namely, nucleation, condensation, coagulation, and coalescence. The nodal method is advantageous in that there are no a priori assumptions regarding the particle size distribution. Titania is formed using the titanium tetrachloride (TiCl4) precursor. TiCl4 can be either oxidized or hydrolyzed to prepare titania. The simulation results provide insight into the particle-particle interactions as well as fluid-particle interactions, under the influence of different physico-chemical factors. The effect of the initial reactant concentration level, Reynolds number, gas mixing and fractal dimension on particle formation and growth are also studied to better understand and control the nano-particle synthesis processes. Results reveal the utility of DNS in elucidating the underlying formation and growth processes as well as the influence on fluid turbulence on nanoparticle dynamics. For brevity, specific conclusions are provided in each chapter.
机译:纳米粒子的形成和生长具有重大的科学,工业和环境意义。纳米颗粒具有独特的性能。这些性质主要是由于它们的尺寸和表面积/体积比。因此,纳米粒子通常是纳米结构材料的基础。一种这样的材料是二氧化钛或二氧化钛。二氧化钛出现在许多工业应用中,例如颜料,光催化剂和遮光剂。在这项工作中,通过直接数值模拟(DNS)研究了二氧化钛在湍流反应流中的形成和生长。 DNS的独特之处在于,它能够以无模型的方式为控制方程式提供解决方案。那是没有使用“湍流”模型和其他假设,这可能会降低所获得的解决方案在真实世界中的逼真度。在这项工作中,所有模拟都是通过求解流体,热场和化学场随时间和空间的函数而获得的。这是通过求解Navier-Stokes方程以及物种质量分数演化方程来实现的。节点方法将粒子场分为三类(单体,团簇和粒子),用于表示纳米粒子的形成和生长,即成核,冷凝,凝聚和聚结。节点法的优点在于,没有关于粒度分布的先验假设。使用四氯化钛(TiCl4)前体形成二氧化钛。 TiCl4可以被氧化或水解以制备二氧化钛。模拟结果提供了在不同理化因素影响下颗粒与颗粒之间以及流体与颗粒之间相互作用的见解。还研究了初始反应物浓度水平,雷诺数,气体混合和分形维数对颗粒形成和生长的影响,以更好地理解和控制纳米颗粒的合成过程。结果揭示了DNS在阐明潜在的形成和生长过程以及对流体湍流对纳米粒子动力学的影响方面的实用性。为简洁起见,每章均提供了具体的结论。

著录项

  • 作者

    Wang, Guanghai.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号