首页> 外文学位 >A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity.
【24h】

A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity.

机译:研究表面以下,表面和太阳大气中的太阳磁场-了解主要太阳活动的原因。

获取原文
获取原文并翻译 | 示例

摘要

Magnetic fields govern all aspects of solar activity from the 11-year solar cycle to the most energetic events in the solar system, such as solar flares and Coronal Mass Ejections (CMEs). As seen on the surface of the sun, this activity emanates from localized concentrations of magnetic fields emerging sporadically from the solar interior. These locations are called solar Active Regions (ARs). However, the fundamental processes regarding the origin, emergence and evolution of solar magnetic fields as well as the generation of solar activity are largely unknown or remain controversial. In this dissertation, multiple important issues regarding solar magnetism and activities are addressed, based on advanced observations obtained by AIA and HMI instruments aboard the SDO spacecraft.;First, this work investigates the formation of coronal magnetic flux ropes (MFRs), structures associated with major solar activity such as CMEs. In the past, several theories have been proposed to explain the cause of this major activity, which can be categorized in two contrasting groups (a) the MFR is formed in the eruption, and (b) the MFR pre-exists the eruption. This remains a topic of heated debate in modern solar physics. This dissertation provides a complete treatment of the role of MFRs from their genesis all the way to their eruption and even destruction. The study has uncovered the pre-existence of two weakly twisted MFRs, which formed during confined flaring 12 hours before their associated CMEs. Thus, it provides unambiguous evidence for MFRs truly existing before the CME eruptions, resolving the pre-existing MFR controversy. Second, this dissertation addresses the 3-D magnetic structure of complex emerging ARs. In ARs the photospheric fields might show all aspects of complexity, from simple bipolar regions to extremely complex multi-polar surface magnetic distributions. In this thesis, we introduce a novel technique to infer the subphotospheric configuration of emerging magnetic flux tubes while forming ARs on the surface. Using advanced 3D visualization tools and applying this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes involved in forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube. Third, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and the shearing occur due to the natural separation of polarities in emerging bipoles. This is forcing changes in the connectivity close to the photosphere (up to a few local pressure scale heights above the surface) by means of photospheric reconnection and subsequent submergence of small bipoles at the collision interface (polarity inversion line; PIL). In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, explaining the observation of filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) eruption occurs due to shearing motion between conjugate polarities, and, (2) bodily emergence of an MFR.
机译:磁场控制着太阳活动的各个方面,从11年的太阳周期到太阳系中最活跃的事件,例如太阳耀斑和日冕物质抛射(CME)。如在太阳表面上看到的那样,这种活动源于从太阳能内部零星出现的局部磁场集中。这些位置称为太阳活动区(AR)。但是,关于太阳磁场的起源,出现和演化以及太阳活动的产生的基本过程在很大程度上还是未知的。本论文基于SDO航天器上的AIA和HMI仪器获得的高级观测结果,解决了有关太阳磁和活动的多个重要问题。首先,这项工作研究了冠状磁通量绳索(MFR)的形成,与之相关的结构主要的太阳活动,例如CME。过去,已经提出了几种理论来解释这种主要活动的原因,可以将其分为两个对比组:(a)爆发中形成了MFR,(b)爆发中存在了MFR。这仍然是现代太阳物理学中激烈争论的话题。本文从MFRs的产生一直到喷发甚至破坏的过程,对MFRs的作用进行了全面的论述。这项研究发现了两个弱扭曲的MFR的存在,它们是在与其相关的CME发生前12小时的狭窄燃烧中形成的。因此,它为CME爆发前真正存在的MFR提供了明确的证据,从而解决了先前存在的MFR争议。其次,本文研究了复杂新兴AR的3-D磁性结构。在AR中,光球场可能显示出复杂性的所有方面,从简单的双极区域到极端复杂的多极表面磁分布。在本文中,我们介绍了一种新颖的技术,可以在表面上形成增透膜的同时推断新兴的磁通量管的亚光层配置。使用先进的3D可视化工具并将此技术应用于复杂的耀斑和CME生产的AR,我们发现参与形成复杂AR的磁通管可能源自SCZ中的单个祖先通量管。可以解释这种复杂性是由于祖先通量管上发生了垂直和水平分叉。第三,本文提出了关于主要太阳活动起源的新设想。当一个以上的通量管穿过光球表面时彼此紧邻时,当它们出现时会发生碰撞和剪切。一旦这种碰撞剪切发生在非共轭黑子之间(相反的极性不属于同一双极),就会触发主要的太阳活动。碰撞和剪切是由于出现的双极中极性的自然分离而发生的。通过光球重新连接以及随后小双极子在碰撞界面(极性反转线; PIL)的浸没,这迫使靠近光球的连通性发生变化(直至表面上方几个局部压力标高)。在这种连续的碰撞中,更多的胶状助焊剂被添加到系统中,从而有效地将MFR扩展到电晕中,从而解释了在PIL上方形成细丝的现象以及耀斑活性和CME。我们的结果拒绝了两种可能引起太阳爆发的流行方案:(1)由于共轭极性之间的剪切运动而发生喷发,以及(2)MFR的身体出现。

著录项

  • 作者

    Chintzoglou, Georgios.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Physics.;Astrophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号