首页> 外文学位 >Exploring error-correction technology in source coding and quantum communications.
【24h】

Exploring error-correction technology in source coding and quantum communications.

机译:探索源代码和量子通信中的纠错技术。

获取原文
获取原文并翻译 | 示例

摘要

The explosive demand for capacity in wireless and wireline communication systems has promoted tremendous research in error control technologies. The discovery and re-discovery of capacity-achieving error correction codes (ECC) in the last decade has not only revolutionized the coding theory, but also opened up a very pervasive scope of well-proven and emerging practical applications, including, for example, wireless communications, multi-user detection, turbo equalization, digital data storage systems, distributed compression, and quantum error correction. In this dissertation, we study emerging topics on the theory and practice of error correction coding technologies and explore their capabilities beyond their conventional applications.The first topic involves the Slepian-Wolf coding problem on binary memoryless sources. The Slepian-Wolf coding problem considers multiple physically-separated non-communicating sources sending statistically-correlated data to a common destination. We first propose a simple and powerful framework for symmetric and asymmetric Slepian-Wolf coding on binary memoryless sources. The new scheme, termed as symmetric syndrome-former inverse-syndrome-former framework (SSIF), can be efficiently applied to any linear channel code, incurs no rate loss when converting the channel code to the Slepian-Wolf code, and can achieve an arbitrary point in the Slepian-Wolf rate region. The feasibility and optimality of the proposed framework is rigorously proven using properties of linear codes and cosets. Hamming codes, turbo product codes, convolutional codes, turbo codes and low-density parity-check (LDPC) codes are provided as examples to demonstrate the generality of the framework. We also analyze the two major categories of SW coding, the syndrome approach and the parity approach. Our study covers both theoretical and practical aspects, including the practical implementation of the source encoder and decoder for both approaches, the criterion for designing the base channel codes, and their respective performances and robustness in both the noiseless and the noisy transmission environments. We show that the syndrome approach is optimal for the noiseless (syndrome) channel case, yet the parity approach is more robust and less error-sensitive. The second problem we study is quantum stabilizer codes, a fundamental error control technology for quantum information and computing. Elucidated in [3], developed in depth in [4] and [5], and exemplified in many research papers [6] [7], stabilizer codes have perhaps the only near-mature theory in quantum coding. The majority of the up-to-date research on quantum ECC codes focuses on one subclass of stabilizer codes, known as CSS codes. We first performed a detailed classification from the perspective of constructing stabilizer codes. From this classification, we notice that all the existing constructions only tackle a small subclass (type-I codes) of potential constructions. Especially, systematic constructions for the type-II codes are almost completely lacking. We discuss properties of the type-II codes and define their core codes. We further develop systematic ways to construct two rich classes of non-CSS stabilizer codes: quantum LDPC codes based on classical quaci-cyclic (QC) LDPC codes, and quantum convolutional codes based on classical LDPC-convolutional codes. Both of these codes belong to the type-I non-CSS codes. To the best of the authors' knowledge, they are also the first non-CSS quantum LDPC codes and non-CSS convolutional quantum codes in the literature. Because they root to powerful classical codes, they are capable of correcting a large number of quantum errors, including bursty errors, in a block. Additionally, both classes of codes enjoy a wide range of lengths and rates, including very high rates that approach 1. Besides constructions, we also investigate decoding strategies, especially for quantum convolutional codes, where no performance curves were reported in literature before our work. Finally, we analyze properties of general stabilizer codes, first on a popular group of CSS-LDPC codes, then on the degeneracy feature of stabilizer codes, and finally on the distance spectrum property of stabilizer codes.
机译:无线和有线通信系统中对容量的爆炸性需求推动了对错误控制技术的大量研究。在过去的十年中,发现并重新发现了可实现容量的纠错码(ECC),这不仅使编码理论发生了革命性变化,而且还开辟了非常广泛的范围,这些领域已被广泛验证,并不断涌现出实际应用,例如:无线通信,多用户检测,turbo均衡,数字数据存储系统,分布式压缩和量子错误校正。在本文中,我们研究了纠错编码技术的理论和实践,并探讨了其在常规应用之外的能力。第一个主题涉及二进制无记忆源上的Slepian-Wolf编码问题。 Slepian-Wolf编码问题考虑了将物理上相关的多个非通信源发送统计相关数据到一个公共目标。我们首先为二进制无内存源上的对称和非对称Slepian-Wolf编码提出了一个简单而强大的框架。新方案称为对称综合症前者逆综合症前体框架(SSIF),可以有效地应用于任何线性信道码,将信道码转换为Slepian-Wolf码时不会造成速率损失,并且可以实现Slepian-Wolf速率区域中的任意点。使用线性代码和陪集的性质严格证明了所提出框架的可行性和最优性。提供汉明码,turbo乘积码,卷积码,turbo码和低密度奇偶校验(LDPC)码作为示例,以证明该框架的通用性。我们还分析了软件编码的两个主要类别,校正子方法和奇偶校验方法。我们的研究涵盖了理论和实践两个方面,包括两种方法的源编码器和解码器的实际实现,设计基本信道代码的标准以及它们在无噪声和有噪声传输环境中的各自性能和鲁棒性。我们表明,综合症方法对于无噪声(综合症)信道情况是最佳的,但是奇偶校验方法更健壮,对错误的敏感度更低。我们研究的第二个问题是量子稳定器代码,这是用于量子信息和计算的基本错误控制技术。在[3]中阐明,在[4]和[5]中有更深入的发展,并在许多研究论文[6] [7]中得到例证,稳定器代码也许是量子编码中唯一的近乎成熟的理论。量子ECC代码的最新研究大多集中在稳定器代码的一个子类上,即CSS代码。我们首先从构建稳定器代码的角度进行了详细的分类。从此分类中,我们注意到所有现有构造仅处理潜在构造的一小部分子类(I型代码)。尤其是,几乎完全缺乏II型代码的系统结构。我们讨论II型代码的属性并定义其核心代码。我们进一步开发了系统的方法来构造两类丰富的非CSS稳定器代码:基于经典准循环(QC)LDPC码的量子LDPC码和基于经典LDPC卷积码的量子卷积码。这两个代码都属于I类非CSS代码。据作者所知,它们也是文献中最早的非CSS量子LDPC码和非CSS卷积量子码。因为它们源于强大的经典代码,所以它们能够在一个块中纠正大量量子错误,包括突发错误。此外,这两类代码均具有广泛的长度和速率,包括接近1的极高速率。除了构造之外,我们还研究解码策略,尤其是对于量子卷积码,在我们的工作之前文献中没有报告性能曲线。最后,我们首先分析一组通用的CSS-LDPC码,然后再分析稳定器码的简并性,最后再分析稳定器码的距离谱特性。

著录项

  • 作者

    Tan, Peiyu.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号