首页> 外文学位 >Dissolution of two-phase microsystems: Gas and liquid microparticle dissolution and dehydration of biomaterials.
【24h】

Dissolution of two-phase microsystems: Gas and liquid microparticle dissolution and dehydration of biomaterials.

机译:两相微系统的溶解:气体和液体微粒的溶解和生物材料的脱水。

获取原文
获取原文并翻译 | 示例

摘要

A main focus of this research is to develop techniques to study the dissolution process of two-phase microsystems on a single microparticle basis. This dissertation introduces a systematic approach to investigate the formation of microparticles to fulfill the need for rational design of microspheres for a range of applications. This novel method is based on the micropipet manipulation technique and can essentially test any system, where the continuous phase is a liquid and the dispersed phase is practically any phase, a gas (foam), a liquid (emulsion), or a solid (suspension). It is possible to study single microparticle volumes in the picoliter to nanoliter scale, which is on the same size-scale as particles created in bulk suspensions, microsphere processes, and applications. The ability to create, isolate, observe, and manipulate individual gas, liquid or solid microparticles in a well-defined and controlled liquid environment was found to be ideal to study gas microbubbles and microparticles, liquid microdroplets, and the dehydration of dissolved solutes. Subsequently, one can directly measure the dissolution rate and, when a solute is present, calculate its concentration during the dissolution process. Microbubble or microdroplet dissolution in a second phase is driven by two independent factors, a concentration gradient (undersaturation of the dispersed phase in the continuous phase) and a pressure gradient (due to the Laplace-overpressure inside the microparticle created by the surface tension). Experimentally, each of these driving forces can be independently tested. Both the gas microparticle and pure liquid microdroplet dissolution can be predicted by a simple theory based on the diffusion coefficient and solubility limit of the dispersed phase in the continuous phase. The dehydration of a salt ion solution microdroplet results in the nucleation and growth of a crystal, while the dehydration of proteins leads to glassification of the protein. The water remaining in the glassified protein microsphere is on the order of a water monolayer surrounding each protein molecule. Both observation and measurement of dehydration within a single microdroplet is the basis to understanding microparticle formation for use in drug delivery systems and biomolecule preservation.
机译:这项研究的主要重点是开发技术,以研究在单个微粒基础上的两相微系统的溶解过程。本文介绍了一种系统的方法来研究微粒的形成,以满足对微球合理设计的需求。这种新颖的方法基于微量移液器操作技术,基本上可以测试任何系统,其中连续相是液体,而分散相实际上是任何相,气体(泡沫),液体(乳液)或固体(悬浮液) )。可以研究皮微升至纳升级的单个微粒体积,该体积与散装悬浮液,微球工艺和应用中产生的微粒的尺寸规模相同。人们发现,在定义明确且受控的液体环境中创建,隔离,观察和操作单个气体,液体或固体微粒的能力非常适合研究气体微气泡和微粒,液体微滴以及溶解的溶质的脱水。随后,人们可以直接测量溶解速率,并且当存在溶质时,可以计算其在溶解过程中的浓度。第二相中的微气泡或微滴溶解受两个独立的因素驱动,即浓度梯度(连续相中分散相的不饱和度)和压力梯度(由于表面张力在微粒内部产生的拉普拉斯过压)所致。实验上,这些驱动力中的每一个都可以独立测试。可以通过基于连续相中分散相的扩散系数和溶解度极限的简单理论来预测气体微粒和纯液体微滴的溶解。盐离子溶液微滴的脱水导致晶体的成核和生长,而蛋白质的脱水导致蛋白质的玻璃化。残留在玻璃化蛋白质微球中的水约为围绕每个蛋白质分子的单层水。观察和测量单个微滴中的脱水都是了解用于药物递送系统和生物分子保存的微粒形成的基础。

著录项

  • 作者

    Duncan, Phillip Brent.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 296 p.
  • 总页数 296
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号