首页> 外文学位 >Energy Harvesting Networked Nodes: Measurements, Algorithms, and Prototyping.
【24h】

Energy Harvesting Networked Nodes: Measurements, Algorithms, and Prototyping.

机译:能量收集网络节点:测量,算法和原型。

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in ultra-low-power wireless communications and in energy harvesting will soon enable energetically self-sustainable wireless devices. Networks of such devices will serve as building blocks for different Internet of Things (IoT) applications, such as searching for an object on a network of objects and continuous monitoring of object configurations. Yet, numerous challenges need to be addressed for the IoT vision to be fully realized.;This thesis considers several challenges related to ultra-low-power energy harvesting networked nodes: energy source characterization, algorithm design, and node design and prototyping. Additionally, the thesis contributes to engineering education, specifically to project-based learning..;We summarize our contributions to light and kinetic (motion) energy characterization for energy harvesting nodes. To characterize light energy, we conducted a first-of-its kind 16 month-long indoor light energy measurements campaign. To characterize energy of motion, we collected over 200 hours of human and object motion traces. We also analyzed traces previously collected in a study with over 40 participants. We summarize our insights, including light and motion energy budgets, variability, and influencing factors. These insights are useful for designing energy harvesting nodes and energy harvesting adaptive algorithms. We shared with the community our light energy traces, which can be used as energy inputs to system and algorithm simulators and emulators.;We also discuss resource allocation problems we considered for energy harvesting nodes. Inspired by the needs of tracking and monitoring IoT applications, we formulated and studied resource allocation problems aimed at allocating the nodes' time-varying resources in a uniform way with respect to time. We mainly considered deterministic energy profile and stochastic environmental energy models, and focused on single node and link scenarios. We formulated optimization problems using utility maximization and lexicographic maximization frameworks, and introduced algorithms for solving the formulated problems. For several settings, we provided low-complexity solution algorithms. We also examined many simple policies. We demonstrated, analytically and via simulations, that in many settings simple policies perform well.;We also summarize our design and prototyping efforts for a new class of ultra-low-power nodes - Energy Harvesting Active Networked Tags (EnHANTs). Future EnHANTs will be wireless nodes that can be attached to commonplace objects (books, furniture, clothing). We describe the EnHANTs prototypes and the EnHANTs testbed that we developed, in collaboration with other research groups, over the last 4 years in 6 integration phases. The prototypes harvest energy of the indoor light, communicate with each other via ultra-low-power transceivers, form small multihop networks, and adapt their communications and networking to their energy harvesting states. The EnHANTs testbed can expose the prototypes to light conditions based on real-world light energy traces. Using the testbed and our light energy traces, we evaluated some of our energy harvesting adaptive policies. Our insights into node design and performance evaluations may apply beyond EnHANTs to networks of various energy harvesting nodes.;Finally, we present our contributions to engineering education. Over the last 4 years, we engaged high school, undergraduate, and M.S. students in more than 100 research projects within the EnHANTs project. We summarize our approaches to facilitating student learning, and discuss the results of evaluation surveys that demonstrate the effectiveness of our approaches.
机译:超低功耗无线通信和能量收集方面的最新进展很快将使能源自给自足的无线设备成为可能。此类设备的网络将充当不同物联网(IoT)应用程序的构建块,例如在对象网络上搜索对象并持续监视对象配置。然而,要完全实现IoT愿景,还需要解决许多挑战。;本文考虑了与超低功耗能量收集网络节点相关的几个挑战:能源特性,算法设计以及节点设计和原型设计。此外,本文还为工程教育做出了贡献,特别是基于项目的学习。.;我们总结了我们对能量收集节点的光能和动能(运动)能量表征的贡献。为了表征光能,我们开展了首个长达16个月的室内光能测量活动。为了表征运动能量,我们收集了200多个小时的人体和物体运动轨迹。我们还分析了先前在40多名参与者的研究中收集的痕迹。我们总结了我们的见解,包括光能和运动能的预算,可变性和影响因素。这些见解对于设计能量收集节点和能量收集自适应算法很有用。我们与社区分享了我们的光能轨迹,可以用作系统和算法模拟器以及仿真器的能量输入。我们还讨论了我们考虑用于能量收集节点的资源分配问题。受跟踪和监视IoT应用程序的需求启发,我们制定并研究了资源分配问题,旨在针对时间以统一的方式分配节点的时变资源。我们主要考虑确定性能量分布图和随机环境能量模型,并集中于单节点和链接方案。我们使用效用最大化和词典最大化框架来制定优化问题,并介绍了解决所提出问题的算法。对于几种设置,我们提供了低复杂度的解决方案算法。我们还研究了许多简单的政策。通过分析和仿真,我们证明了在许多情况下简单的策略都可以很好地执行。我们还总结了针对新型超低功耗节点-能量收集有源网络标签(EnHANT)的设计和原型开发工作。未来的EnHANT将成为可以连接到普通物体(书籍,家具,衣服)的无线节点。我们描述了EnHANT的原型和我们与其他研究小组合作在过去4年中在6个集成阶段中开发的EnHANTs测试平台。原型收集室内光能,通过超低功耗收发器相互通信,形成小型多跳网络,并使它们的通信和网络适应其能量收集状态。 EnHANTs测试平台可以根据真实世界的光能轨迹将原型暴露在光照条件下。使用测试台和我们的光能轨迹,我们评估了一些能量收集适应性策略。我们对节点设计和性能评估的见解可能不仅仅适用于EnHANT,还适用于各种能量收集节点的网络。最后,我们介绍了我们对工程教育的贡献。在过去的四年中,我们聘请了高中,本科生和M.S. EnHANTs项目中100多个研究项目的学生。我们总结了促进学生学习的方法,并讨论了评估调查的结果,这些结果证明了我们方法的有效性。

著录项

  • 作者

    Gorlatova, Maria.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号