首页> 外文学位 >Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly.
【24h】

Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly.

机译:工程多功能活性漆:通过连续对流沉淀组件沉积的薄薄,对流组装的活细胞生物复合涂层和胶体微粒。

获取原文
获取原文并翻译 | 示例

摘要

Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (<10 µm thick), ordered films with engineered compositions, thicknesses, and particle packing that offer several advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts.;This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing <10 µm thick colloid coatings—monodispersed latex particle or cell suspensions, bimodal blends of latex particles or live cells and microspheres, and trimodal formulations of biomodal latex and live cells on substrates such as aluminum foil, glass, porous Kraft paper, polyester, and polypropylene. Continuous convective-sedimentation assembly (CSA) is introduced to enable fabrication of larger surface area and long coatings by constantly feeding coating suspension to the meniscus, thus expanding the utility of convective assembly to deposit monolayer or very thin films or multi-layer coatings composed of thin layers on a large scale.;Results show thin, tunable coatings can be fabricated from diverse coating suspensions and critical coating parameters that control thickness and structure. Particle size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. Microbes behave like colloidal particles during CSA, allowing for deposition of very thin stable biocomposite coatings of latex-live cell blends. CSA of particle-cell blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-cell interactions and formation of particle aggregates that disrupt coating microstructure during deposition.;Tunable process parameters, such as particle concentration, fluid sonication, and fluid density, influence coating homogeneity when the meniscus is continuously supplied. Fluid density modification and fluid sonication affect particle sedimentation and distribution in the coating growth front whereas the suspended particle concentration strongly affects coating thickness, but has almost no effect on void space. Changing the suspension delivery mode (topside versus underside CCSA) yields disparate meniscus volumes and uneven particle delivery to the drying front, which enables control of the coating microstructure by varying the total number of particles available for deposition. The judicious combination of all these parameters will enable deposition of uniform, thin, latex-cell monolayers over areas on the order of tens of square centimeters or larger.;To demonstrate the utility of biocomposite coatings, this dissertation investigated photoreactive coatings (artificial leaves) from suspensions of latex particles and nitrogen-limited Rps. palustris CGA009 or sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.
机译:先进的复合材料可以通过开发将活细胞整合到功能性材料和设备中的方法来进行革新。这可以通过连续,快速地沉积薄的有序阵列的胶体胶乳颗粒和保持稳定并保持微生物反应性的活细胞来实现。对流组装是一种将胶体颗粒快速组装成薄的,厚度小于10μm的有序薄膜的方法,该薄膜具有经过工程设计的成分,厚度和颗粒堆积,与较厚的随机有序复合材料相比,具有多个优点,包括增强的细胞稳定性和通过最小化扩散来提高反应性耐营养,减少光散射。该方法可用于将活细菌,蓝细菌,酵母和藻类精确地沉积到生物复合涂层中,形成反应性生物传感器,光吸收剂或先进的生物催化剂。该论文开发了新的连续沉积和涂层表征方法,用于制造和表征<10 µm厚胶体涂料-单分散乳胶颗粒或细胞悬浮液,乳胶颗粒或活细胞和微球的双峰共混物,以及在铝箔,玻璃,多孔牛皮纸,聚酯和聚丙烯等基材上的生物模态乳胶和活细胞的三峰配方。引入连续对流沉降组件(CSA),通过不断向弯月面进料悬浮液,从而能够制造更大的表面积和长的涂层,从而扩大了对流组件的用途,以沉积单层或非常薄的薄膜或由以下组成的多层涂层结果表明,可以通过各种涂层悬浮液和控制厚度和结构的关键涂层参数来制造可调节的薄涂层。粒径比和电荷会影响沉积,对流混合或混合以及相对的颗粒位置。基材的润湿性和悬浮液成分通过控制悬浮液的输送和在整个基材上的扩散来影响涂层的微观结构。在CSA期间,微生物的行为就像胶体颗粒一样,允许沉积非常薄的乳胶-活细胞混合物的稳定生物复合涂层。颗粒-细胞共混物的CSA产生开放堆积的结构(平均空隙空间为15-45%),而不是单组分系统可获得的紧密堆积的涂层,从而确认存在明显的聚合物颗粒-细胞相互作用和形成破坏颗粒的聚集体沉积过程中涂层的微观结构。可调节的工艺参数,例如颗粒浓度,流体超声处理和流体密度,会在连续供应弯液面时影响涂层的均匀性。流体密度的改变和流体的超声处理会影响涂层生长前沿的颗粒沉降和分布,而悬浮颗粒的浓度会强烈影响涂层的厚度,但对空隙空间几乎没有影响。改变悬浮液的输送方式(顶部CCSA相对于底部CCSA)会产生不同的弯液面体积和不均匀的颗粒输送至干燥前部,从而可以通过改变可沉积颗粒的总数来控制涂层的微观结构。所有这些参数的明智组合将使均匀的,薄的,乳胶细胞单层沉积在数十平方厘米或更大的区域上。为了证明生物复合涂层的实用性,本论文研究了光反应性涂层(人造叶)从乳胶颗粒和氮限制的Rps悬浮液中提取。 palustris CGA009或硫磺限制的C. reinhardtii CC-124。这些涂料在产氧条件下显示稳定,持续(> 90小时)的光氢产生。营养减少会减慢细胞分裂,最大程度地减少涂层的生长,并促进光氢的产生,从而改善涂层的反应性。显微结构的扫描电子显微镜揭示了如何通过生物复合层中纳米孔的大小和分布来控制涂层的反应性。胶体微球尺寸和悬浮液组成的变化不会影响涂层的反应性,但是两个参数都会改变涂层的微观结构。涂有胶体颗粒和细胞的薄涂层的多孔纸可以使涂层在气相中使用而不会脱水,可以为制氢提供更高的体积生产率。未来的工作应集中在优化细胞密度,光强度,培养基循环和乙酸盐浓度上。

著录项

  • 作者

    Jenkins, Jessica Shawn.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.;Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 305 p.
  • 总页数 305
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号