首页> 外文学位 >Enhancing analytical toolboxes of pavement management systems via integration of computational intelligence
【24h】

Enhancing analytical toolboxes of pavement management systems via integration of computational intelligence

机译:通过集成计算智能来增强路面管理系统的分析工具箱

获取原文
获取原文并翻译 | 示例

摘要

Infrastructure asset management refers to a decision support system that helps authorities in making decisions among alternatives for further development of assets or improvement of existing infrastructure. Pavement management system (PMS) is a subset of transportation infrastructure asset management that covers all the activities involved in providing and maintaining pavements at an adequate level of service. Increased pavement deterioration and increased performance demands along with limited budget and human resources have all made pavement management a critical and challenging task.;Probably the most critical analysis tools in every PMS are condition evaluation, performance prediction, needs assessment, prioritization and optimization toolboxes. However, it is not easy to develop these toolboxes in a reliable fashion. Often, agencies have to deal with incomplete, subjective, ambiguous, uncertain, or erroneous information that makes the developed analysis tools, and, in turn, the decision-making process very unreliable or even irrational. Therefore, there is a need for more capable computational tools that can handle problems such as numerical intensity or ambiguous subjectivity within the collected data.;Computational intelligence methods, including machine learning (ML) techniques, and evolutionary algorithms (EA) have been demonstrated to be promising in addressing these difficulties involved in the development of PMS analysis tools. The general goal of this dissertation is to enhance the analytical toolboxes for pavement condition evaluation and performance prediction via integration of computational intelligence techniques.;Combining the computational efficiency of artificial neural networks (ANN) with the reliability and effectiveness of EA paradigms resulted in superior backcalculation of flexible pavement structural properties, compared to conventional available software. The developed backcalculation methodology results in lower deflection-matching errors and is independent of seed values. In addition, a backcalculation methodology considering pavement behavior under different load levels was developed using a multi-objective evolutionary algorithm (MOEA). The multi-objective approach allows implementation of more available deflection data in order to provide better insight into the complex backcalculation problem. Using MOEA in backcalculation of deflection data from FHWA's long-term pavement performance (LTPP) study resulted in more consistent moduli along each pavement section, compared to conventional single objective routines.;A framework is provided for the development and implementation of an ANN performance prediction model in a network-level PMS. The developed pavement roughness prediction model has superior prediction capability compared to multivariate nonlinear regression models, demonstrated by better generalization of performance trends. An example illustrates the implementation of the roughness model along with life-cycle cost analysis (LCCA) in making future pavement rehabilitation recommendations.;Comparing machine learning techniques, the most suitable for pavement performance prediction is determined through rigorous testing. Preprocessing of data using normalization and principal component analysis simplifies the developed prediction model and avoids correlation of input variables. Feed-forward and cascade-forward ANN, support vector machines (SVM), and radial basis function (RBF) networks are contrasted regarding their prediction capability. The developed models do not require previous knowledge about the equation form and can accommodate noisy data. Variants of these learning paradigms were compared using quantitative and qualitative evaluations, including evaluation of model accuracy, generalization capability, parsimony, sensitivity to changes in input factors, and predicted deterioration progression rates.;Overall, this study provides a framework for integration of computational intelligence in backcalculation and performance modeling towards more effective, efficient, and reliable PMS toolboxes compared to previously available solutions. Superior performance of ML techniques in function approximation compared to multivariate nonlinear regression, and EAs in complex optimization compared to exhaustive search routines, have contributed in this regard.
机译:基础设施资产管理是指决策支持系统,可帮助主管部门在替代方案中做出决策,以进一步开发资产或改善现有基础设施。路面管理系统(PMS)是交通基础设施资产管理的子集,涵盖了在提供和维护适当服务水平的路面时涉及的所有活动。路面恶化的加剧和性能要求的提高,以及有限的预算和人力资源,都使路面管理成为一项关键而具有挑战性的任务。在每个PMS中,最关键的分析工具可能是状态评估,性能预测,需求评估,优先级划分和优化工具箱。但是,以可靠的方式开发这些工具箱并不容易。通常,代理机构必须处理不完整,主观,模棱两可,不确定或错误的信息,这些信息使已开发的分析工具,进而使决策过程变得非常不可靠甚至不合理。因此,需要有一种更强大的计算工具来处理收集到的数据中的数值强度或主观性不明确等问题。已经证明了包括机器学习(ML)技术和进化算法(EA)在内的计算智能方法可以有希望解决PMS分析工具开发中遇到的这些困难。本文的总体目标是通过集成计算智能技术来增强用于路面状况评估和性能预测的分析工具箱。;将人工神经网络(ANN)的计算效率与EA范式的可靠性和有效性相结合,可以实现出色的反计算与传统的可用软件相比,柔性路面的结构特性发达的反算方法可以降低偏转匹配误差,并且与种子值无关。此外,使用多目标进化算法(MOEA)开发了考虑不同载荷水平下路面行为的反算方法。多目标方法允许实现更多可用的变形数据,以便更好地了解复杂的反计算问题。与传统的单目标程序相比,使用MOEA对FHWA的长期路面性能(LTPP)研究得出的挠度数据进行反算会导致沿每个路面截面的模量更加一致。;提供了一个框架来开发和实现ANN性能预测网络级PMS中的模型。与多元非线性回归模型相比,所开发的路面粗糙度预测模型具有出色的预测能力,这可以通过更好地概括性能趋势来证明。一个示例说明了粗糙度模型以及生命周期成本分析(LCCA)在提出未来路面修复建议时的实现方式。通过比较机器学习技术,最严格的测试确定了最适合路面性能预测的技术。使用归一化和主成分分析对数据进行预处理可简化开发的预测模型,并避免输入变量的相关性。前馈和级联前向神经网络,支持向量机(SVM)和径向基函数(RBF)网络在预测能力方面进行了对比。所开发的模型不需要有关方程式的先前知识,并且可以容纳嘈杂的数据。使用定量和定性评估对这些学习范例的变体进行了比较,包括评估模型的准确性,泛化能力,简约性,对输入因子变化的敏感性以及预测的恶化进展速度。总体而言,本研究为计算智能的集成提供了框架与先前可用的解决方案相比,可以更有效,更有效,更可靠地使用PMS工具箱进行反向计算和性能建模。在这方面,与多元非线性回归相比,机器学习技术在函数逼近方面的优越性能,在复杂优化中的EA与穷举搜索例程相比,均表现出色。

著录项

  • 作者

    Kargah Ostadi, Nima.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Civil engineering.;Computer science.;Engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号