首页> 外文学位 >Scaling reversible adhesion in synthetic and biological systems
【24h】

Scaling reversible adhesion in synthetic and biological systems

机译:扩大合成和生物系统中可逆的附着力

获取原文
获取原文并翻译 | 示例

摘要

Geckos and other insects have fascinated scientists and casual observers with their ability to effortlessly climb up walls and across ceilings. This capability has inspired high capacity, easy release synthetic adhesives, which have focused on mimicking the fibrillar features found on the foot pads of these climbing organisms. However, without a fundamental framework that connects biological and synthetic adhesives from nanoscopic to macroscopic features, synthetic mimics have failed to perform favorably at large contact areas. In this thesis, we present a scaling approach which leads to an understanding of reversible adhesion in both synthetic and biological systems over multiple length scales. We identify, under various loading scenarios, how geometry and material properties control adhesion, and we apply this understanding to the development of high capacity, easy release synthetic adhesive materials at macroscopic size scales. Starting from basic fracture mechanics, our generalized scaling theory reveals that the ratio of contact area to compliance in the loading direction, A/C, is the governing scaling parameter for the force capacity of reversible adhesive interfaces. This scaling theory is verified experimentally in both synthetic and biological adhesive systems, over many orders of magnitude in size and adhesive force capacity (Chapter 2). This understanding is applied to the development of gecko-like adhesive pads, consisting of stiff, draping fabrics incorporated with thin elastomeric layers, which at macroscopic sizes (contact areas of 100 cm2) exhibit force capacities on the order of 3000 N. Significantly, this adhesive pad is non-patterned and completely smooth, demonstrating that fibrillar features are not necessary to achieve high capacity, easy release adhesion at macroscopic sizes and emphasizing the importance of subsurface anatomy in biological adhesive systems (Chapter 2, Chapter 3). We further extend the utility of the scaling theory under shear (Chapter 4) and normal (Chapter 5) loading conditions and develop simple expressions for patterned and non-patterned interfaces which describe experimental force capacity data as a function of geometric parameters such as contact area, aspect ratio, and contact radius. These studies provide guidance for the precise control of adhesion with enables the development of a simple transfer printing technique controlled by geometric confinement (Chapter 6). Force capacity data from each chapter, along with various literature data are collapsed onto a master plot described by the A/C scaling parameter, with agreement over 15 orders of magnitude in adhesive force capacity for synthetic and biological adhesives, demonstrating the generality and robustness of the scaling theory (Chapter 7).
机译:壁虎和其他昆虫以其轻松爬上墙壁和穿过天花板的能力而吸引了科学家和临时观察员。这种功能激发了高容量,易剥离的合成胶粘剂,这些胶粘剂的重点是模仿这些攀爬生物的脚垫上的纤维状特征。但是,如果没有将生物学和合成粘合剂从纳米到宏观特征连接起来的基本框架,合成模拟物就无法在大的接触区域发挥良好的作用。在本文中,我们提出了一种缩放方法,该方法导致人们对多种长度范围内的合成和生物系统中可逆粘附的理解。我们确定在各种载荷情况下,几何形状和材料特性如何控制粘合力,并将这种理解应用于宏观尺寸范围内高容量,易剥离的合成粘合材料的开发。从基本的断裂力学出发,我们的广义缩放理论揭示了在载荷方向上接触面积与柔量的比值A / C是可逆粘合剂界面的受力能力的决定性缩放参数。在合成和生物胶粘剂系统中,均已在尺寸和胶粘力容量的多个数量级上对这种结垢理论进行了实验验证(第二章)。这种理解适用于壁虎式胶垫的开发,该胶垫由硬质的悬垂织物和薄的弹性体层组成,在宏观尺寸(接触面积为100 cm2)下,其承受力约为3000N。胶垫没有图案,并且完全光滑,这表明为获得高容量,在宏观尺寸下容易释放胶粘剂并不需要纤维状特征,并强调了在生物胶粘剂系统中地下解剖的重要性(第2章,第3章)。我们进一步扩展了比例理论在剪切(第4章)和法向(第5章)载荷条件下的效用,并为带图案和非带图案的界面开发了简单的表达式,这些表达式将实验力容量数据描述为几何参数(如接触面积)的函数,长宽比和接触半径。这些研究为精确控制附着力提供了指导,并使得能够开发一种受几何限制控制的简单转移印刷技术(第6章)。每章的力容量数据以及各种文献数据被折叠到A / C缩放参数所描述的主图中,合成和生物胶粘剂的力容量超过15个数量级,这证明了胶粘剂的通用性和耐用性缩放理论(第7章)。

著录项

  • 作者

    Bartlett, Michael David.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Materials science.;Polymer chemistry.;Mechanics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号