首页> 外文学位 >Emission of volatile organic compounds from multi-layer structural insulated panels.
【24h】

Emission of volatile organic compounds from multi-layer structural insulated panels.

机译:多层结构隔热板排放的挥发性有机化合物。

获取原文
获取原文并翻译 | 示例

摘要

Indoor air quality is recognized as one of the most important environmental concerns, since people spend almost 90% of their lifetime indoors. Indoor sources of volatile organic compounds (VOCs) are a determinant of air quality in houses. Many materials used to construct and finish the interiors of new houses emit VOCs. These emissions are a probable cause of acute health effects and discomfort among occupants. Ventilation is another determinant of indoor air quality in houses, because it serves as the primary mechanism for removal of gaseous contaminants generated indoors. Thus, higher contaminant concentrations are expected at lower ventilation rates given constant emission rates. The trend in new construction is to make house envelopes tighter for higher energy efficiency. The use of Structural Insulated Panels (SIPs) in new construction and major renovation to create very tight building envelopes is one popular approach to realizing this goal. The basic SIPs configuration uses oriented strand board (OSB) and polystyrene foam (PSF) in a multi-layered sandwich-like structure. Specific benefits of SIPs include lower energy consumption, stronger more durable structures and better resource efficiency. These advantages make panelized systems very attractive from both environmental impact and energy use perspectives. However, there is a potential for houses constructed with SIPs to have degraded air quality relative to conventionally constructed houses that utilize fewer engineered wood products. OSB emits pentanal and hexanal, two odorous aldehydes. These contaminants originate in the wood drying process through the breakdown of wood tissue and are, thus, inherent to most engineered wood products. The PSF in SIPs is a major source of styrene. The large surface area of installed SIPs systems (typically the entire exterior shell), combined with the resulting decrease in ventilation rate due to very low infiltration, exacerbates the indoor air problem. Thus, the potential release of volatile contaminants must be taken into careful consideration when designing homes constructed with SIPs. The ability to predict and ultimately minimize the negative impact of panel systems on indoor concentrations of contaminants of concern would be extremely useful for advancing housing technologies. No prior investigations of VOC emissions from SIPs have been reported in the literature.; Two main methods are used to characterize emissions from building materials: chamber studies and mathematical modeling. While chamber studies are costly and time-consuming, mathematical modeling is becoming an economical and effective alternative. Physically-based models are especially useful because they provide insight into the governing mechanisms and the factors that control the emissions process. Although emissions from building materials have traditionally been empirically characterized in chambers, we have recently validated a mechanistic model that predicts VOC emissions from vinyl flooring. The approach involved independently measuring C0 (the initial material-phase concentration), D (the material-phase diffusion coefficient), K (the material/air partition coefficient) and then predicting the emission rate a priori using a fundamental mass-transfer model We now wish to generalize this approach and use it to predict emissions from multi-layered SIPs. To begin with, we will apply a single-layer model to predict emissions from each of the two SIP components: OSB and PSF. Once this has been accomplished, it should be possible to develop a multi-layer model to predict emissions from the composite SIPs.; Our first research objective was to characterize transport of volatile organic compounds (VOCs) in polystyrene foam (PSF), a diffusion-controlled building material. The sorption/desorption behavior of the polystyrene foam was investigated using a single-component system. A microbalance was used to measure the sorption/desorption kinetics and to obtain equilibrium
机译:室内空气质量被认为是最重要的环境问题之一,因为人们将近90%的生命花在室内。室内挥发性有机化合物(VOC)的来源是房屋空气质量的决定因素。用于建造和装修新房子内部的许多材料会排放VOC。这些排放物可能是造成急性健康影响和乘员不适的原因。通风是决定室内空气质量的另一个决定因素,因为通风是清除室内产生的气态污染物的主要机制。因此,在给定恒定排放率的情况下,在较低的通风率下,预期污染物浓度更高。新建筑的趋势是使房屋围护结构更紧密,以提高能源效率。在新建筑和大型翻新工程中使用结构绝缘板(SIP)以创建非常紧凑的建筑围护结构是实现此目标的一种流行方法。 SIP的基本配置使用多层夹心结构的定向刨花板(OSB)和聚苯乙烯泡沫(PSF)。 SIP的特定优势包括更低的能耗,更坚固耐用的结构以及更好的资源效率。从环境影响和能源使用的角度来看,这些优点使面板式系统非常有吸引力。但是,与使用较少的工程木产品的常规建造房屋相比,使用SIP建造的房屋有降低空气质量的潜力。 OSB释放出戊醛和己醛这两种臭味醛。这些污染物源于木材干燥过程中木材组织的分解,因此是大多数工程木产品所固有的。 SIP中的PSF是苯乙烯的主要来源。已安装的SIP系统的表面积很大(通常是整个外壳),再加上由于渗透率非常低而导致的通风速度降低,这加剧了室内空气问题。因此,在设计由SIP建造的房屋时,必须仔细考虑挥发性污染物的潜在释放。预测并最终最小化面板系统对室内污染物浓度的负面影响的能力对于推进住房技术将非常有用。文献中尚未有关于SIP排放VOC的调查报告。有两种主要方法可用于表征建筑材料的排放:室内研究和数学建模。虽然腔室研究既昂贵又费时,但数学建模正在成为一种经济有效的替代方法。基于物理的模型特别有用,因为它们可以深入了解治理机制和控制排放过程的因素。尽管传统上已根据经验在室内对建筑材料的排放进行了表征,但我们最近验证了一种机械模型,该模型可预测乙烯地板的VOC排放。该方法涉及独立测量C0(初始物料相浓度),D(物料相扩散系数),K(物料/空气分配系数),然后使用基本传质模型先验地预测排放速率。现在希望将这种方法推广起来,并用它来预测多层SIP的排放。首先,我们将应用单层模型来预测两个SIP组件(OSB和PSF)中每个组件的排放。一旦完成,就应该有可能建立一个多层模型来预测复合SIP的排放。我们的第一个研究目标是表征挥发性有机化合物(VOC)在扩散控制的建筑材料聚苯乙烯泡沫(PSF)中的传输。使用单组分系统研究了聚苯乙烯泡沫的吸附/解吸行为。微量天平用于测量吸附/解吸动力学并获得平衡

著录项

  • 作者

    Yuan, Huali.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Civil.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号