首页> 外文学位 >Nanostructure and Reactivity of Soot Produced from Partially Premixed Charge Compression Ignition (PCCI) Combustion and Post Injection
【24h】

Nanostructure and Reactivity of Soot Produced from Partially Premixed Charge Compression Ignition (PCCI) Combustion and Post Injection

机译:部分预混合电荷压缩点火(PCCI)燃烧和后喷射产生的烟灰的纳米结构和反应性

获取原文
获取原文并翻译 | 示例

摘要

Researchers have invested significant effort on optimizing the engine operation mode while cutting down the emissions due to increasingly strict emissions regulations. This study explores Partially-Premixed Charge Compression Ignition (PCCI) combustion and post injection in a light duty multicylinder turbodiesel engine to reduce particulate matter (PM) and NOx emissions without sacrificing the engine performance.;Three different fuels are tested in this PCCI combustion research: Ultra Low Sulfur Diesel (ULSD), diesel fuel produced via a low temperature Fischer-Tropsch process (LTFT) and a Renewable Diesel (RD). Late injection PCCI combustion can reduce NOx emissions by 76-78% and reduce soot emissions by 25-35%. High cetane number (CN), high ignition quality fuels LTFT and RD only increase CO emissions by 40-45% and THC emissions by 11-16% under late injection PCCI combustion compared to conventional combustion, while ULSD increases CO emissions by 78% and THC emissions by 24% under late injection PCCI combustion.;The reaction rate constants of soot produced from late injection PCCI combustion are 1.2-2.2 times higher than soot from the conventional combustion conditions. The reaction rate constants of soot from LTFT and RD fuels are 47-66% lower than soot produced from ULSD. Soots produced from PCCI combustion have smaller graphene layers, higher surface oxygen concentration and higher portion of amorphous carbon. In addition, the primary particle and particle aggregate sizes are around 25nm and 400 nm for conventional combustion soot, while 10 nm and 150 nm for late injection PCCI combustion soot. Soots produced from LTFT and RD fuel under conventional combustion, show internal burning during oxidation. However, soots produced from late injection PCCI combustion and ULSD show shrinking core oxidation, likely because of their overall amorphous structure.;Post injection is another method to reduce engine-out soot emissions while maintaining efficiency, potentially to reduce or eliminate exhaust aftertreatment. Close-coupled post injections reduce soot emissions by 11-21%, THC emissions by 14-28%, and CO emissions by 7-8%. However, NOx emissions increase by 3-5%. For long-dwell post injection condition, soot emissions are reduced by 28-33% and NOx emissions are reduced by 7-8%. CO and THC emissions do not vary much under long dwell post injection conditions.;The reaction rate constants of soot from close-coupled post injection conditions increase by 10-13% compared to baseline condition, while the reaction rate constants of soot from long dwell post injection conditions decrease by 37-39% compared to baseline condition. Moreover, with the increase of injection dwell and post injection size, soot surface oxygen content and amorphous carbon content increase. This explains the change in reactivity of soot from different injection dwells. Primary soot particle and particle aggregate sizes do not vary much with post injection. Soot from post injection conditions all show shrinking core type oxidation without graphene layer rearrangement.
机译:由于日益严格的排放法规,研究人员已投入大量精力优化发动机运行模式,同时减少了排放。这项研究探索了轻型多缸涡轮柴油机的部分预混合增压压缩点火(PCCI)燃烧和后喷射,以在不牺牲发动机性能的情况下减少颗粒物(PM)和NOx排放。;在该PCCI燃烧研究中测试了三种不同的燃料:超低硫柴油(ULSD),通过低温费-托工艺(LTFT)和可再生柴油(RD)生产的柴油。后期喷射PCCI燃烧可以减少NOx排放76-78%,减少烟尘排放25-35%。与常规燃烧相比,在后期喷射PCCI燃烧下,高十六烷值(CN),高点火质量的燃料LTFT和RD仅会使CO排放增加40-45%,THC排放增加11-16%,而ULSD将CO排放增加78%和在后期喷射PCCI燃烧下,THC排放降低了24%。后期喷射PCCI燃烧产生的烟灰的反应速率常数比常规燃烧条件下的烟灰高1.2-2.2倍。 LTFT和RD燃料产生的烟灰的反应速率常数比ULSD产生的烟尘低47-66%。 PCCI燃烧产生的烟灰具有较小的石墨烯层,较高的表面氧浓度和较高的无定形碳含量。另外,对于常规的燃烧灰,初级颗粒和颗粒聚集体的尺寸为约25nm和400nm,而对于后期注入的PCCI燃烧灰,初级颗粒和颗粒聚集体的尺寸为10nm和150nm。在常规燃烧下,由LTFT和RD燃料产生的烟灰在氧化过程中显示出内部燃烧。但是,后期喷射PCCI燃烧和ULSD产生的烟灰显示出铁心的收缩,这可能是由于其整体为无定形结构。后喷射是另一种减少发动机排出的烟尘排放,同时保持效率的方法,可能减少或消除排气后处理。紧密耦合的后喷射减少了11-21%的烟尘排放,减少了14-28%的THC排放,并减少了7-8%的CO排放。但是,NOx排放增加了3-5%。对于长时后喷射条件,烟尘排放量减少28-33%,NOx排放量减少7-8%。在长喷射后条件下,CO和THC的排放量变化不大。;与基线条件相比,紧密耦合的后喷射条件下的烟灰反应速率常数增加了10-13%,而长时停留的烟灰反应速率常数与基线状况相比,注射后状况减少了37-39%。而且,随着注入停留时间和注入后尺寸的增加,烟尘表面氧含量和无定形碳含量增加。这解释了来自不同注射停留时间的烟灰反应性的变化。初级烟灰颗粒和颗粒聚集体的大小随后注射变化不大。后喷射条件下的烟灰均显示出收缩的芯型氧化,而石墨烯层没有重新排列。

著录项

  • 作者

    Sun, Chenxi.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号