首页> 外文学位 >Optimization of quantum dot structures using chemical and physical processing.
【24h】

Optimization of quantum dot structures using chemical and physical processing.

机译:使用化学和物理处理优化量子点结构。

获取原文
获取原文并翻译 | 示例

摘要

Quantum confined semiconductor nanocrystals, or quantum dots (QD), are a material class with tremendous technological potential. As research intensifies, there is a growing awareness that many of the fundamental assumptions of QD production are not well understood. A higher level of control over the processing methods that affect QD crystallinity, shape, and inter-QD coupling is necessary for the production of reliable, reproducible, and efficient devices. I present original research focused on the optimization of QD structures through the detailed investigation of chemical and physical processing procedures. The first synthesis of size tunable, monodisperse, quantum confined SnSe QDs is described. I discuss the implications of an unusual precursor injection sequence on the nucleation and growth process, and QD crystal structure. I continue my investigations of the synthesis method in a report describing shape control of PbSe QDs. I show that the shape of PbSe QDs can be tuned from pseudo-spherical to cubic by changing only the post-injection temperature ramp rate, a parameter not generally included in literature synthesis descriptions, exposing critical insights into the reproducibility and growth mechanisms of PbSe QDs. Device applications often demand strict control over the inter-QD coupling while still maintaining quantum confinement. I present two studies on the fabrication of confined-but-connected (CBC) QD films. First, I introduce the pulsed laser annealing (PLA) processing strategy to the QD platform. After defining the process and its effect on QD films, I report the production of CBC structures by the PLA of amorphous silicon encapsulated PbSe QD films. The next report describes the fabrication of CBC PbSe films by facet specific displacement of surface ligands, resulting in epitaxial fusion of proximate QDs. Optical investigations demonstrate that the films retain quantum confinement while improving electrical conductivity by more than 3 orders of magnitude. Finally, the complex nanosized phase behavior of Au and Fe2O 3 is investigated using in-situ temperature dependent scanning transmission electron microscopy (STEM). I demonstrate that heating the nanocrystals together results in a new bulk-forbidden composite phase. Using the STEM data, I present the first ever single-particle nanophase diagram with composition, temperature, and size dependent phase behavior.
机译:量子约束半导体纳米晶体或量子点(QD)是具有巨大技术潜力的材料类别。随着研究的加强,人们越来越认识到对QD生产的许多基本假设的了解不多。对影响QD结晶度,形状和QD间耦合的加工方法进行更高级别的控制对于生产可靠,可重复且高效的设备十分必要。我目前通过化学和物理加工程序的详细研究,着重于优化QD结构的原始研究。描述了尺寸可调,单分散,量子约束的SnSe QD的第一个合成方法。我讨论了不寻常的前体注入顺序对成核和生长过程以及QD晶体结构的影响。我在描述PbSe QD形状控制的报告中继续研究合成方法。我表明,仅改变注入后的温度上升速率即可将PbSe QD的形状从伪球形调整为立方,这是文献合成描述中通常未包含的参数,从而揭示了对PbSe QD的再现性和生长机理的关键见解。 。器件应用通常要求对QD间耦合进行严格控制,同时还要保持量子限制。我介绍了两个有关约束但连接(CBC)QD薄膜制造的研究。首先,我向QD平台介绍了脉冲激光退火(PLA)处理策略。在定义了该过程及其对QD薄膜的影响之后,我报告了PLA由非晶硅封装的PbSe QD薄膜产生的CBC结构。下一份报告描述了通过表面配体的小平面特定位移来制造CBC PbSe薄膜,从而导致邻近QD外延融合的现象。光学研究表明,这些膜保留了量子限制,同时将电导率提高了3个数量级以上。最后,使用与温度相关的原位扫描透射电子显微镜(STEM)研究了Au和Fe2O 3的复杂纳米相行为。我证明了将纳米晶体一起加热会产生新的块体禁止复合相。使用STEM数据,我展示了有史以来第一个具有组成,温度和尺寸依赖性相行为的单粒子纳米相图。

著录项

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Physical chemistry.;Nanoscience.;Materials science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号