首页> 外文学位 >Flame-based synthesis of multicomponent metal nanoparticles and nanostructured coatings.
【24h】

Flame-based synthesis of multicomponent metal nanoparticles and nanostructured coatings.

机译:基于火焰的多组分金属纳米颗粒和纳米结构涂层的合成。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation focuses on synthesis and applications of multicomponent metal nanoparticles and coatings for printable and flexible microelectronics applications such as radio frequency identification tagging (RFID), printed circuits, and conductive patterns on flexible substrates. At present, silver and copper dominate as conductive ingredients in metal-based inks. A key bottleneck in the growth of the printable electronics market is the high cost of silver and poor oxidation resistance of copper. Research aimed at finding better alternatives to pure silver and copper in metal-based inks is urgently needed. One of the solutions lies in creation of alloy nanoparticles or mixtures of single component metal nanoparticles to give rise to improved property combinations, such as high conductivity, low cost, and oxidation resistance in a single formulation. These multi-component nanoparticles must ultimately be produced at high volume and low cost, must exhibit high electrical conductivity (>100 S/m) at low sintering temperatures (< 300°C), and must remain oxidation resistant over the life cycle of the products in which they will be used.;This synthesis route used in this research work is a flame based aerosol reactor which is a continuous, scalable, and economic route towards mass production of these engineered nanoparticles. The metal nanoparticles are synthesized via a high temperature reducing jet (HTRJ) reactor developed by Scharmach et al. (2011). This synthesis method is based on thermal decomposition of an aqueous solution of inorganic metal salt precursors using low cost energy from hydrogen combustion. The goals of the research described here were to: (1) Synthesize new bimetallic and multi-component metal nanoparticles (such as core-shell/hybrid morphology) and nanostructured films; (2) Study their electrical conductivity and other properties to assess their potential for use in silver replacement nano-inks for printable electronics applications as well as other applications; (3) Elucidate the effects of process parameters on the crystallinity and particle size of metal nanoparticles produced in the HTRJ reactor; (4) Develop computational models to aid in understanding the flow, heat, and mass transfer inside the HTRJ reactor.;The HTRJ reactor employs a converging-diverging nozzle that produces a high-velocity, well mixed gas stream of combustion products, such as unreacted hydrogen and water vapor. The hot gas stream transfers energy to the aqueous precursor, which evaporates and decomposes into reactive gas phase species. Nanoparticles nucleate and grow from these reactive gas-phase species. A key feature of the HTRJ process is that it provides exceptionally rapid heating and mixing of a cold (liquid or gas) stream with the hot combustion product gases. In our nanoparticle synthesis application, this allows us to decouple the flame chemistry, which occurs upstream of the nozzle, from the nanoparticle formation chemistry, which occurs downstream of the nozzle. Excess hydrogen rapidly reduces any metal-oxides to the corresponding metals. The particles grow by collision and coalescence during their ~50 ms residence time in the reactor. A large flow of cool nitrogen quenches this process at the reactor exit. The particles are collected on a polymer membrane filter. Pure silver, pure copper, copper-silver, copper-silver-tin, and copper-nickel nanoparticles and coatings were synthesized and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), and atomic force microscopy (AFM). Palladium and palladium alloy nanoparticles and coatings such as Pd-Ag, and Pd-Ag-Cu were also synthesized and were deposited on porous substrates such as sintered SS-316 and alumina (Al2O 3) for potential applications in hydrogen purification membranes.;In the last chapter of this dissertation, we modeled aspects of the HTRJ process in FLOW-3D. FLOW-3D is a powerful commercial CFD package. In it, the fluid dynamics and heat transfer in the HTRJ process were modeled as a one component, compressible, and turbulent flow. Gas velocity, gas temperature, pressure, wall to fluid heat flux, and solid wall temperatures were computed. The modeling effort presented here demonstrates and tests the capabilities of FLOW-3D to model such complex flows. The model was simplified using axisymmetric and single component assumptions.
机译:本论文的重点是用于可印刷和柔性微电子应用的多组分金属纳米颗粒和涂层的合成和应用,例如射频识别标签(RFID),印刷电路和柔性基板上的导电图案。目前,银和铜在金属基油墨中占主导地位。可印刷电子市场增长的关键瓶颈是银的高成本和铜的抗氧化性差。迫切需要进行研究以寻找更好的金属油墨中纯银和铜的替代品。解决方案之一在于产生合金纳米颗粒或单组分金属纳米颗粒的混合物,以在单一配方中产生改进的性能组合,例如高电导率,低成本和抗氧化性。这些多组分纳米颗粒必须最终以大批量,低成本生产,必须在低烧结温度(<300°C)下表现出高电导率(> 100 S / m),并且必须在整个使用寿命内保持抗氧化性。本研究工作中使用的这种合成路线是基于火焰的气溶胶反应器,这是一种连续,可扩展且经济的路线,可大规模生产这些工程化的纳米颗粒。金属纳米颗粒是通过Scharmach等人开发的高温还原射流(HTRJ)反应器合成的。 (2011)。该合成方法基于使用氢燃烧的低成本能量对无机金属盐前体的水溶液进行热分解的方法。这里描述的研究目标是:(1)合成新的双金属和多组分金属纳米颗粒(例如核-壳/杂化形态)和纳米结构的薄膜; (2)研究其导电性和其他性能,以评估其在可印刷电子应用以及其他应用中替代银的纳米墨水中使用的潜力; (3)阐明工艺参数对在HTRJ反应器中生产的金属纳米颗粒的结晶度和粒径的影响; (4)开发计算模型以帮助理解HTRJ反应器内部的流动,热量和质量传递; HTRJ反应器采用会聚-发散喷嘴,可产生高速,混合均匀的燃烧产物气流,例如未反应的氢气和水蒸气。热气流将能量转移至水性前体,后者蒸发并分解为反应性气相物质。纳米颗粒从这些反应性气相物质中成核并生长。 HTRJ工艺的一个关键特征是,它提供了异常快速的加热,并将冷(液体或气体)流与热燃烧产物气体混合。在我们的纳米颗粒合成应用程序中,这使我们能够将发生在喷嘴上游的火焰化学与发生在喷嘴下游的纳米颗粒形成化学分离。过量的氢会迅速将任何金属氧化物还原为相应的金属。粒子在其在反应器中的〜50 ms停留时间内会通过碰撞和聚结而生长。大流量的冷氮气在反应器出口处终止该过程。将颗粒收集在聚合物膜过滤器上。合成了纯银,纯铜,铜银,铜银锡和铜镍纳米粒子和涂层,并使用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射(XRD),和原子力显微镜(AFM)。还合成了钯和钯合金纳米粒子以及涂层(例如Pd-Ag和Pd-Ag-Cu),并将其沉积在多孔基材(例如烧结的SS-316和氧化铝(Al2O 3))上,可在氢纯化膜中潜在应用。在本文的最后一章,我们对FLOW-3D中HTRJ过程的各个方面进行了建模。 FLOW-3D是功能强大的商业CFD软件包。其中,HTRJ过程中的流体动力学和热传递被建模为一个单一的,可压缩的和湍流的流体。计算了气体速度,气体温度,压力,壁到流体的热通量和固体壁温度。此处介绍的建模工作演示并测试了FLOW-3D对此类复杂流进行建模的功能。使用轴对称和单分量假设简化了模型。

著录项

  • 作者

    Sharma, Munish Kumar.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号