首页> 外文学位 >A new technology for pre-combustion Co2 separation.
【24h】

A new technology for pre-combustion Co2 separation.

机译:燃烧前二氧化碳分离的新技术。

获取原文
获取原文并翻译 | 示例

摘要

The first part of this thesis provides a comprehensive assessment of recently improved carbon dioxide (CO2) separation and capture systems, used at power plants and other industrial processes. Different approaches for CO2 capture are pre-combustion, post-combustion capture, and oxy-combustion systems, which are reviewed, along with their advantages and disadvantages. New technologies and prospective "breakthrough technologies", for instance: novel solvents, sorbents, and membranes for gas separation are examined. Other technologies including chemical looping technology (reaction between metal oxides and fuels, creating metal particles, carbon dioxide, and water vapor) and cryogenic separation processes (based on different phase change temperatures for various gases to separate them) are reviewed as well. Furthermore, the major CO2 separation technologies, such as absorption (using a liquid solvent to absorb the CO2), adsorption (using solid materials with surface affinity to CO2 molecules), and membranes (using a thin film to selectively permeate gases) are extensively discussed, though issues and technologies related to CO2 transport and storage are not considered in this paper.;The objective of the second part of this research is to study the performance of an inexpensive high-surface-area nanoporous titanium oxide (TiO2) on the CO2/H2 separation and resulting pre-combustion CO2 capture. The experiments were carried out at different temperatures (25, 50, 75, 100, and 125°C) and pressures (5, 10, 15, 20, 25, 30, and 35 bar) by using a fixed bed adsorber. The data obtained for the pure component isotherms and binary gas mixtures were correlated using Sips and Langmuir-Freundlich binary-component expanded isotherm adsorption (LFBE) models, respectively. Also, the deactivation model was utilized to simulate the observed CO 2 sorption breakthrough curves. Experimental results show that the capture capacities of the sorbent for both H2 and CO2 were improved with the increase in the pressure and decrease in the temperature. The maximum sorption capacities for pure CO2 and H2 were found to be 14.4 and 5.2 mmol/g-TiO2 at 35 bar and 25°C, respectively. The increase in temperature and decrease in pressure, improve the sorption selectivity of TiO2 for CO2. The selectivity value of TiO2 reached 9.87 at 125°C and 5 bar for CO2/H2 molar ratio of 50/50. TiO2 also shows great stability and regenerability. This study indicates that nanoporous TiO2 is potentially a cost-effective and robust CO2/H2 separation agent, and provides the knowledge needed for further demonstration of the nanoporous TiO2 based pre-combustion CO2 separation technology.
机译:本文的第一部分对发电厂和其他工业过程中使用的最近改进的二氧化碳(CO2)分离和捕集系统进行了全面评估。二氧化碳捕集的不同方法包括燃烧前,燃烧后捕获和氧气燃烧系统,并对其优缺点进行了综述。研究了新技术和潜在的“突破性技术”,例如:新型溶剂,吸附剂和用于气体分离的膜。还审查了其他技术,包括化学循环技术(金属氧化物和燃料之间的反应,产生金属颗粒,二氧化碳和水蒸气)和低温分离工艺(基于各种气体的不同相变温度将其分离)。此外,广泛讨论了主要的CO2分离技术,例如吸收(使用液态溶剂吸收CO2),吸收(使用对CO2分子具有表面亲和力的固体材料)和膜(使用薄膜选择性渗透气体)。 ;尽管本文未考虑与CO2的运输和存储有关的问题和技术。本研究第二部分的目的是研究廉价的高表面积纳米多孔二氧化钛(TiO2)在CO2上的性能。 / H2分离和燃烧前的二氧化碳捕集。通过使用固定床吸附器,在不同的温度(25、50、75、100和125℃)和压力(5、10、15、20、25、30和35 bar)下进行实验。分别使用Sips和Langmuir-Freundlich二元组分膨胀等温线吸附(LFBE)模型对纯组分等温线和二元气体混合物获得的数据进行关联。同样,使用失活模型来模拟观察到的CO 2吸附穿透曲线。实验结果表明,随着压力的升高和温度的降低,吸附剂对H2和CO2的捕获能力均得到提高。在35 bar和25°C下,纯净CO2和H2的最大吸附容量分别为14.4和5.2 mmol / g-TiO2。温度的升高和压力的降低提高了TiO2对CO2的吸附选择性。当CO2 / H2摩尔比为50/50时,TiO2在125°C和5 bar下的选择性值达到9.87。 TiO2还显示出极大的稳定性和可再生性。这项研究表明,纳米多孔TiO2可能是一种经济高效且坚固的CO2 / H2分离剂,并提供了进一步证明基于纳米多孔TiO2的预燃烧CO2分离技术所需的知识。

著录项

  • 作者

    Danaei Kenarsari, Saeed.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Engineering Chemical.
  • 学位 M.S.
  • 年度 2013
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号