首页> 外文学位 >Aerosol routes to synthesis of nanoparticles and its application to energetic materials.
【24h】

Aerosol routes to synthesis of nanoparticles and its application to energetic materials.

机译:气溶胶合成纳米颗粒的途径及其在高能材料中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Mixtures of fuel and oxidizers with particle sizes in the nanometer range have been widely used for energy intensive applications like propellants and explosives. Nano-Al is invariably used as fuel, while a host of metal oxide nanoparticles are used as oxidizers, such as: Fe2O 3, CuO, MoO3, depending on the thermodynamics and kinetics of the reaction. This work describes synthetic procedures for oxidizer nanoparticles via aerosol routes with a fine control on the morphology and oxidative characteristics of the nanoparticles. An aero-sol-gel method has been used for the synthesis of nanoporous Iron oxide nanoparticles with a controlled surface area ranging from 3--200 m2/g. A new super-reactive formulation of Al/KMnO 4 has been developed which is a few orders of magnitude more reactive than the traditional formulations of Al/Fe2O3, Al/MoO 3 and Al/CuO. The nanoenergetic materials were subjected to confined combustion in a pressure vessel and the reactivity was measured in terms of pressurization rate (psi/mus). Difference in characteristic temperature of two components of a composite nanoparticle has been employed to synthesize particles with a core-shell nanostructure. By manipulating, the interfacial area between the fuel and oxidizer particles we have developed methods both to enhance as well as moderate the reactivity of energetic materials in a large dynamic range.; The second part of this work describes a simple aerosol model for synthesis of nanoparticles by evaporation/condensation method. A new approach to the solution of the General Dynamic Equation (GDE) based on a nodal method has been used. The model solution described is suitable for problems involving gas to particle conversion due to homogeneous nucleation, coagulation, and surface growth of particles via evaporation/condensation of monomers. The important features of the model is that it is simple to comprehend, the software which we call Nodal GDE Solver (NGDE) is relatively compact, and the code is well documented internally, so that users may apply it to their specific needs or make modifications as required. The solution presented here describes the solution of the problem and our approach for both constant and size-dependent surface tension.
机译:粒径在纳米范围内的燃料和氧化剂的混合物已被广泛用于能源密集型应用,如推进剂和炸药。纳米铝始终用作燃料,而大量金属氧化物纳米粒子用作氧化剂,例如:Fe2O 3,CuO,MoO3,具体取决于反应的热力学和动力学。这项工作描述了通过气雾剂途径对氧化剂纳米颗粒的合成程序,并对纳米颗粒的形态和氧化特性进行了精确控制。气溶胶-凝胶法已被用于合成具有3-2-200m2 / g的受控表面积的纳米多孔氧化铁纳米颗粒。已经开发出一种新的Al / KMnO 4超反应性配方,其反应性比传统的Al / Fe2O3,Al / MoO 3和Al / CuO配方高几个数量级。将纳米高能材料在压力容器中进行密闭燃烧,并根据加压速率(psi / mus)测量反应性。复合纳米颗粒的两种组分的特征温度差已被用于合成具有核-壳纳米结构的颗粒。通过操纵,燃料和氧化剂颗粒之间的界面区域,我们开发了在大的动态范围内增强和调节高能材料反应性的方法。这项工作的第二部分描述了一种简单的气溶胶模型,用于通过蒸发/冷凝方法合成纳米颗粒。使用了一种基于节点方法的通用动力学方程(GDE)求解的新方法。所描述的模型解决方案适用于涉及由于均相成核,凝结和由于单体的蒸发/冷凝而产生的颗粒表面生长而导致的气体到颗粒转化的问题。该模型的重要特征是易于理解,我们称为Nodal GDE Solver(NGDE)的软件相对紧凑,并且内部有充分的代码说明,因此用户可以将其应用于特定需求或进行修改按要求。此处介绍的解决方案描述了问题的解决方案以及我们针对恒定和尺寸相关的表面张力的方法。

著录项

  • 作者

    Prakash, Anand.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号