首页> 外文学位 >CFD Analysis and Design Optimization of Flapping Wing Flows.
【24h】

CFD Analysis and Design Optimization of Flapping Wing Flows.

机译:扑翼流动的CFD分析和设计优化。

获取原文
获取原文并翻译 | 示例

摘要

The main objectives of this research work are to perform the CFD analysis of the 3-D flow around a flapping wing in a gusty environment and to optimize its kinematics and shape to maximize the performance. The effects of frontal, side, and downward wind gusts on the aerodynamic characteristics of a rigid wing undergoing insect-based flapping motion are analyzed numerically. The turbulent, low-Reynolds-number flow near a flapping wing is governed by the 3-D unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the Spalart-Allmaras turbulence model. The governing equations are solved using a second-order node-centered finite volume method on a hexahedral mesh that rigidly moves along with the wing. Our numerical results show that a centimeter-scale wing considered is susceptible to strong downward wind gusts. In the case of frontal and side gusts, the flapping wing can alleviate the gust effect if the gust velocity is less than or comparable to the wing tip velocity. The second objective is to optimize the wing kinematics and shape to improve its aerodynamic characteristics. To our knowledge, this is the first attempt to perform high-fidelity combined optimization of flapping wing kinematics and shape in 3-D unsteady turbulent flows. For our optimization studies, an adjoint-based gradient method using the method of Lagrange multipliers is employed to minimize an objective functional with the 3D URANS and grid equations as constraints. It has been shown that some unsteady phenomena such as the clap and fling mechanism found in use by flying insects (e.g., a wasp Encarsaria formosa, or greenhouse white-fly Trialeurodes vaporariorium), maximize the wing propulsive efficiency. These results indicate that the time-dependent adjoint-based optimization method is an efficient tool for design of a new generation of micro air vehicles.
机译:这项研究工作的主要目标是在大风环境中对扑翼周围的3-D流动进行CFD分析,并优化其运动学和形状以最大化性能。数值分析了正面,侧面和向下的阵风对刚过昆虫拍打运动的刚性机翼空气动力学特性的影响。扑翼附近的湍流,低雷诺数湍流由带有Spalart-Allmaras湍流模型的3-D非稳态雷诺平均Navier-Stokes(URANS)方程控制。使用二阶节点中心有限体积法在与机翼一起刚性移动的六面体网格上求解控制方程。我们的数值结果表明,所考虑的厘米级机翼容易受到强烈的向下阵风。在正面和侧面阵风的情况下,如果阵风速度小于或等于机翼末梢速度,则襟翼可以减轻阵风效应。第二个目标是优化机翼的运动学和形状,以改善其空气动力学特性。据我们所知,这是在3-D非定常湍流中对襟翼运动学和形状进行高保真度组合优化的首次尝试。对于我们的优化研究,使用了基于拉格朗日乘数法的基于伴随的梯度法,以3D URANS和网格方程为约束,最小化目标函数。已经显示出一些不稳定的现象,例如飞行昆虫(例如黄蜂的Encarsaria formosa或温室白粉虱Trialeurodes vaporariorium)使用的拍手和甩动机制,最大化了机翼的推进效率。这些结果表明,基于时间的伴随式优化方法是设计新一代微型飞行器的有效工具。

著录项

  • 作者

    Jones, Martin Alexander.;

  • 作者单位

    North Carolina Agricultural and Technical State University.;

  • 授予单位 North Carolina Agricultural and Technical State University.;
  • 学科 Engineering Mechanical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号