首页> 外文学位 >Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions.
【24h】

Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions.

机译:轻水反应堆条件下陶瓷包层燃料的颗粒包层机械相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima.;With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release.;High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission gas release. An optimum design is sought considering both thermal and mechanical models of this ceramic cladding with UO2 and advanced high density fuels.
机译:诸如碳化硅(SiC)之类的陶瓷材料是核燃料包壳的有前途的候选材料,并且由于其高温强度,在辐照下的尺寸稳定性,耐腐蚀性和较低的中子吸收跨度而成为潜在的耐事故燃料设计的一部分而受到关注。 -部分。它还可以大大降低因冷却剂事故造成的氢气损失,例如福岛所经历的事故。汽油。由于可忽略的蠕变和高刚度,包覆SiC的燃料可在更高的燃耗和不明显的包覆尺寸变化下封闭间隙。但是,中子辐照会严重降低SiC的导热系数,从而导致燃料温度升高,并释放更多的裂变气体。SiC的高刚度具有在丸粒-包层机械相互作用(PCMI)时会累积大界面压力的缺点。这种大应力最终将达到SiC的抗弯强度,从而导致SiC覆层立即以脆性方式失效,而不是韧性金属覆层的正常失效。较大的界面压力导致以前只具有边际意义的现象而被忽略(例如燃料的蠕变),现在在PCMI中起重要作用。在FRAPCON的PCMI模型中考虑燃料颗粒的蠕变和弹性变形,可以更好地理解累积的界面压力的大小。药丸的向外溶胀被向内辐射诱导的蠕变所阻止,从而降低了界面压力的形成速率。也可以通过增加间隙宽度和包层厚度来降低PCMI的影响。但是,增加间隙宽度和包层厚度也会增加总的热阻,从而导致更高的燃料温度和更大的裂变气体释放。既要考虑UO2陶瓷覆层的热力学模型,又要考虑先进的高密度燃料的力学模型,以寻求最佳设计。

著录项

  • 作者

    Li, Bo-Shiuan.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Nuclear.;Engineering Materials Science.
  • 学位 M.S.
  • 年度 2013
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号