首页> 外文学位 >Hydraulic fracture orientation for miscible gas injection eor in the elm coulee field.
【24h】

Hydraulic fracture orientation for miscible gas injection eor in the elm coulee field.

机译:榆树古力油田中混溶气体注入的水力压裂方向。

获取原文
获取原文并翻译 | 示例

摘要

There is tremendous potential for shale oil reservoirs, such as the Bakken Formation, Eagle Ford and Niobrara to have a lasting impact on the U.S energy situation due to the multi-billion barrel resource base that these formations contain. Horizontal drilling and multi-stage hydraulic fracturing technologies have allowed significant oil to be produced in the Elm Coulee Field in Bakken Formation; however, the primary recovery factors are still less than 10%, which means enhanced oil recovery (EOR) methods need to become the next big push in shale oil research. Miscible gas injection may become the most effective EOR method in such low permeability fields, because conventional water flooding may result in extremely low injectivity. This work expands on the previous research that showed miscible gas injection may be a possible solution for the Elm Coulee Field. All the wells in that study have longitudinal hydraulic fractures; whereas today, most wells have the multi-transverse fractures. The significance of this research is to evaluate the reservoir performance of the miscible gas flooding with different hydraulic fracture orientations; longitudinal hydraulic fracture orientation and transverse hydraulic fracture orientation, and recommends the best hydraulic fracture orientation. In the thesis, separate numerical simulation models with multi-transverse hydraulic fractures and longitudinal hydraulic fractures have been built and the results are compared in the flow simulator Eclipse. Miscible gas injection can increase the recovery factor (RF) from less than 10% in the primary production to above 25% for both types of hydraulic fracture orientation. Two different gridding methods were used in this work. In the uniform gridding method, the transverse fracture case always performs better than the longitudinal fracture in both the primary and secondary production. However, in the local grid refinement (LGR) gridding method, the longitudinal fracture leads to a higher RF than the transverse fracture in miscible gas injection due to its late breakthrough time and similar "piston displacement". Also, the utilization factor, which is the ratio of the total injected solvent over the total oil produced, indicates that the longitudinal fracture is more effective than the transverse fracture case. Four different permeability values for the upper Bakken, ranging from 2.5x10-1 md to 2.5x10-4 md, have been chosen to compare, and the results indicate that the degree of the upper Bakken permeability impact decreases at lower permeability values. Also, several Middle Dolomite permeability cases are built and the comparison shows that if the permeability values increase from 0.01 md to 0.02 md, the RF increases more than 5%. From the hydraulic facture permeability sensitivity analysis, 100 md is considered as the boundary of the finite fracture and infinite fracture for this field. If the hydraulic fracture permeability value is less than 100 md, the RF and oil production increase significantly as the permeability increases. However, if the permeability is more than 100 md, the reservoir performance will not increase largely as the permeability increases. The bottom hole pressure (BHP) shows that if the BHP increases from 3500 psi to 4700 psi, the RF decreases from 8% to less than 3% for the primary production, and for miscible gas injection, the RF decreases from 28% to 19%. The results of all the flow simulation models are discussed and analyzed in Chapter 4 and Chapter 5. This work, which simulates the miscible gas injection procedure by using the flow simulator Eclipse, forms the foundation to begin understanding how to best perform the miscible gas injection EOR and optimize the best hydraulic fracture orientation in the Elm Coulee Field in the Bakken Formation.
机译:由于Bakken组,Eagle Ford和Niobrara组等页岩油储层蕴藏着数十亿桶的资源基础,因此它们对美国的能源状况具有持久的影响。水平钻探和多阶段水力压裂技术使巴肯组的榆树库里油田能够生产大量石油。但是,主要的采收率仍低于10%,这意味着提高油采收率(EOR)方法必须成为页岩油研究的下一个推动力。在这种低渗透率油田中,混溶气体注入可能成为最有效的EOR方法,因为常规注水可能导致极低的注入率。这项工作是在以前的研究的基础上扩展的,该研究表明,混溶气体的注入可能是Elm Coulee油田的可能解决方案。该研究中的所有油井均具有纵向水力压裂。而如今,大多数井都具有多横向裂缝。这项研究的意义是评估不同水力压裂方向的混相气驱的储层性能。纵向水力裂缝取向和横向水力裂缝取向,并推荐最佳水力裂缝取向。在本文中,建立了分别具有多横向水力压裂和纵向水力压裂的数值模拟模型,并在流量模拟器Eclipse中对结果进行了比较。对于两种类型的水力压裂方向,混溶气体注入可以使采收率(RF)从最初的不到10%提高到超过25%。在这项工作中使用了两种不同的网格化方法。在均匀网格法中,在一次生产和二次生产中,横向裂缝情况总是比纵向裂缝情况要好。但是,在局部网格细化(LGR)网格化方法中,由于混相气体注入的晚期突破时间和类似的“活塞位移”,纵向裂缝导致的RF高于横向裂缝的RF。而且,利用率是注入的总溶剂与所产生的全部油之比,表明纵向裂缝比横向裂缝更为有效。已经选择了上巴肯的四个不同的渗透率值,范围从2.5x10-1 md到2.5x10-4 md,进行比较,结果表明,在较低的渗透率值下,上巴肯的渗透率影响程度降低。此外,建立了几个中等白云岩渗透率的案例,比较表明,如果渗透率值从0.01 md增加到0.02 md,则RF会增加5%以上。从水力压裂渗透率敏感性分析来看,该油田将100 md视为有限裂缝和无限裂缝的边界。如果水力压裂渗透率值小于100 md,则随着渗透率的增加,RF和采油量将显着增加。但是,如果渗透率大于100 md,则随着渗透率的增加,储层性能将不会大大提高。井底压力(BHP)显示,如果BHP从3500 psi增加到4700 psi,则一次生产的RF将从8%降低至小于3%,而对于混溶气体注入,RF将从28%降低至19 %。在第4章和第5章中讨论和分析了所有流动模拟模型的结果。这项工作通过使用流量模拟器Eclipse模拟可混溶气体的注入过程,为开始理解如何最佳地进行可混溶气体的注入奠定了基础。在巴肯组的Elm Coulee油田进行EOR并优化最佳水力压裂方向。

著录项

  • 作者

    Xu, Tao.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Engineering Petroleum.
  • 学位 M.S.
  • 年度 2013
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号