首页> 外文学位 >Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts.
【24h】

Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts.

机译:研究多功能金基纳米催化剂的合成,结构和催化性能。

获取原文
获取原文并翻译 | 示例

摘要

Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the thermophilic-enzyme complexes responsive to near infrared electromagnetic radiation, which is absorbed minimally by biological tissues. When enzyme-Au nanorod complexes are illuminated with a near-infrared laser, thermal energy is generated which activates the thermophilic enzyme. Enzyme-Au nanorod complexes encapsulated in calcium alginate are reusable and stable for several days, making them viable for industrial applications. Lastly, highly versatile Au nanoparticles with diameters of ~3-12 nm were prepared using carbon monoxide (CO) to reduce a Au salt precursor onto preformed catalytic Au particles. Compared to other reducing agents used to generate metallic NPs, CO can be used at room temperature and its oxidized form does not interfere with the colloidal stability of NPs suspended in water. Controlled synthesis of different sized particles was verified through detailed ultraviolet-visible spectroscopy, small angle X-ray scattering, and transmission electron microscopy measurements. This synthesis method should be extendable to other monometallic and multimetallic compositions and shapes, and can be improved by using preformed particles with a narrower size distribution.
机译:过渡金属纳米材料用于催化许多化学反应,包括那些对环境,医学和石化领域至关重要的化学反应。改善其催化性能和使用寿命将带来重大的经济和环境收益。进行此类改进的潜在权宜之计是改变过渡金属纳米催化剂的形状,尺寸或组成。这项工作调查了合成的Au,Pd-on-Au和Au-酶模型过渡金属纳米催化剂的结构与催化性能之间的关系。由于Au和Pd-on-Au纳米材料的广泛应用以及与结构有关的电子和几何特性,因此对其进行了研究。本论文的目的是提供有助于制备更有效的过渡金属纳米催化剂的设计程序和合成方法。系统地研究了钯金金纳米颗粒(NPs)的尺寸和组成的影响,发现它们均影响催化剂的表面结构和催化性能。研究了三氯乙烯的催化加氢氯化和金上钯金纳米颗粒还原4-硝基苯酚的方法,因为这些反应分别对环境和药物合成应用有用。结构表征表明,表面Pd原子的分散和氧化态受Au粒径和Pd浓度控制。这些结构变化与两个探针反应的观察到的Pd-on-Au NP活性相关,为双金属纳米催化剂的结构-活性关系提供了新的见识。利用Au NPs的结构依赖性电子性质,制备了一种新型的光触发生物催化剂,并用于远程控制模型生化反应。该生物催化剂由共价连接到Au纳米棒表面的模型嗜热型葡萄糖激酶组成。金纳米颗粒的棒状形状使嗜热酶复合物对近红外电磁辐射有响应,近红外电磁辐射被生物组织吸收得最少。当用近红外激光照射酶-金纳米棒复合物时,会产生热能,从而激活嗜热酶。封装在藻酸钙中的酶-金纳米棒复合物可重复使用且稳定几天,使其在工业应用中可行。最后,使用一氧化碳(CO)制备了直径约为3-12 nm的用途广泛的金纳米颗粒,以将金盐前体还原到预先形成的催化金颗粒上。与用于生成金属NP的其他还原剂相比,CO可以在室温下使用,其氧化形式不会干扰悬浮在水中的NP的胶体稳定性。通过详细的紫外可见光谱,小角度X射线散射和透射电子显微镜测量,验证了不同尺寸颗粒的控制合成。该合成方法应可扩展到其他单金属和多金属成分和形状,并可以通过使用尺寸分布较窄的预成型颗粒进行改进。

著录项

  • 作者

    Pretzer, Lori A.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Chemistry Inorganic.;Nanoscience.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号