首页> 外文学位 >Olefin Cyclopropanation and Carbon- Hydrogen Amination via Carbene and Nitrene Transfers Catalyzed by Engineered Cytochrome P450 Enzymes.
【24h】

Olefin Cyclopropanation and Carbon- Hydrogen Amination via Carbene and Nitrene Transfers Catalyzed by Engineered Cytochrome P450 Enzymes.

机译:工程化细胞色素P450酶催化的通过羰基和丁二烯转移进行的烯烃环丙烷化和碳氢胺化反应。

获取原文
获取原文并翻译 | 示例

摘要

Synthetic biology promises to transform organic synthesis by enabling artificial catalysis in living cells. I start by reviewing the state of the art in this young field and recognizing that new approaches are required for designing enzymes that catalyze nonnatural reactions, in order to expand the scope of biocatalytic transformations. Carbene and nitrene transfers to C=C and C-H bonds are reactions of tremendous synthetic utility that lack biological counterparts. I show that various heme proteins, including cytochrome P450BM3, will catalyze promiscuous levels of olefin cyclopropanation when provided with the appropriate synthetic reagents (e.g., diazoesters and styrene). Only a few amino acid substitutions are required to install synthetically useful levels of stereoselective cyclopropanation activity in P450BM3. Understanding that the ferrous-heme is the active species for catalysis and that the artificial reagents are unable to induce a spin-shift-dependent increase in the redox potential of the ferric P450, I design a high-potential serine-heme ligated P450 (P411) that can efficiently catalyze cyclopropanation using NAD(P)H. Intact E. coli whole-cells expressing P411 are highly efficient asymmetric catalysts for olefin cyclopropanation. I also show that engineered P450s can catalyze intramolecular amination of benzylic C-H bonds from arylsulfonyl azides. Finally, I review other examples of where synthetic reagents have been used to drive the evolution of novel enzymatic activity in the environment and in the laboratory. I invoke preadaptation to explain these observations and propose that other man-invented reactions may also be transferrable to natural enzymes by using a mechanism-based approach for choosing the enzymes and the reagents. Overall, this work shows that existing enzymes can be readily adapted for catalysis of synthetically important reactions not previously observed in nature.
机译:合成生物学有望通过在活细胞中实现人工催化来转变有机合成。首先,我回顾了这个年轻领域的最新技术,并认识到需要新的方法来设计可催化非天然反应的酶,以扩大生物催化转化的范围。碳和氮的转移到C = C和C-H键是具有巨大的合成实用性的反应,缺乏生物学上的对应物。我显示,当提供适当的合成试剂(例如重氮酸酯和苯乙烯)时,各种血红素蛋白(包括细胞色素P450BM3)将催化混杂水平的烯烃环丙烷化。在P450BM3中仅需几个氨基酸取代即可安装合成上有用的立体选择性环丙烷化活性水平。考虑到亚铁血红素是催化的活性物种,并且人工试剂无法诱导三氧化二铁P450氧化还原电位的自旋位移依赖性增加,我设计了一个高电位丝氨酸血红素连接的P450(P411 ),可以使用NAD(P)H有效催化环丙烷化。表达P411的完整大肠杆菌全细胞是用于烯烃环丙烷化的高效不对称催化剂。我还表明,工程改造的P450可以催化芳基磺酰叠氮化物的苄基C-H键的分子内胺化。最后,我回顾了在环境和实验室中使用合成试剂驱动新型酶活性演变的其他例子。我调用预适应来解释这些观察结果,并提出通过使用基于机制的方法选择酶和试剂,其他人为反应也可以转移至天然酶。总的来说,这项工作表明,现有的酶可以很容易地用于催化以前自然界中未观察到的重要合成反应。

著录项

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Chemistry Biochemistry.;Chemistry General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 260 p.
  • 总页数 260
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号