首页> 外文学位 >Type II topoisomerase-DNA interactions: Structure, mechanism, and covalent trapping.
【24h】

Type II topoisomerase-DNA interactions: Structure, mechanism, and covalent trapping.

机译:II型拓扑异构酶与DNA的相互作用:结构,机理和共价捕获。

获取原文
获取原文并翻译 | 示例

摘要

Type II DNA topoisomerases play a critical role in chromosome supercoil relaxation, decatenation, and condensation by performing the remarkable feat of passing one DNA duplex though another. Although there are a number of fragment structures for these enzymes, none of them contain the DNA---thus our understanding of this acrobatic catalytic cycle and the molecular mechanisms of the many clinically deployed pharmacological agents that target the DNA-protein ternary complex remain limited. While conventional type II topoisomerases act to simplify DNA topology, a prokaryotic member of the topoisomerase II family, DNA gyrase, is actually able to introduce negative supercoils in an ATP dependent manner. Indirectly implicated in this unique ability of gyrase to generate negative supercoils was the C-terminal domain of gyrase A.; I solved the X-ray structure of the E. coli gyrase A C-terminal domain (CTD) with MAD phasing. The spiraling spatial arrangement of blade motifs led naturally to a hypothesis that explains the role of this domain in the context of the full protein. Fragment biochemistry (EMSA determination of dissociation constants and topoisomerase I relaxation assays) and biophysics (single molecule lambda-DNA shortening assays) was used to confirm the hypothesized functional role of this fragment: this domain wraps DNA with a (+) solenoidal writhe and presents the conserved cleavage-reunion core of the protein with a positive node. The strict enforcement of positive node positioning underlies the unique bias for (-) supercoil induction of gyrase. To examine the wrapping in molecular detail with crystallography, a pool-deconvolution disulfide cross-linking strategy was developed.; Type II topoisomerases display only modest sequence specificity---the challenge of obtaining a DNA-bound structure is the generation of homogeneously bound DNA requisite for crystallization. A number of strategies have been employed to generate uniformly trapped species that represent different discrete intermediates in the duplex passage mechanism: disulfide cross-linking with 5'-phosphate tethered thiols, trapping with suicide DNA substrates (nicked species with lesions and bridging 3'-phosphorothioates), and cruciform DNA complexes. Several of these modified DNA oligonucleotides required or allowed innovation of new nucleoside synthetic methodologies. Many of these trapping techniques have been successfully employed to generate various DNA-bound structures with high homogeneity, however, thus far these none of these complexes have produced diffraction quality crystals.
机译:II型DNA拓扑异构酶通过使一个DNA双链体通过另一个而实现了非凡的壮举,从而在染色体超螺旋松弛,脱级和凝聚中起着关键作用。尽管这些酶有许多片段结构,但它们都不包含DNA ---因此我们对这种杂技催化循环的了解和许多针对DNA-蛋白质三元复合物的临床应用药理学的分子机制仍然有限。 。尽管常规的II型拓扑异构酶可简化DNA拓扑结构,但拓扑异构酶II家族的原核成员DNA回旋酶实际上能够以ATP依赖性方式引入负超螺旋。旋回酶A的C-末端结构域间接地牵涉到旋回酶产生负超螺旋的这种独特能力。我用MAD相位解决了大肠杆菌回旋酶A末端结构域(CTD)的X射线结构。叶片基序的螺旋形空间排列自然导致了一个假说,该假说解释了该结构域在完整蛋白质中的作用。使用片段生物化学(EMSA确定解离常数和拓扑异构酶I弛豫分析)和生物物理学(单分子lambda-DNA缩短分析)来确认该片段的假定功能:该结构域用(+)螺线管包裹DNA并呈递带有保守节点的蛋白质保守的切割-重聚核心。严格执行正节点定位是(-)旋涡超螺旋诱导的独特偏见的基础。为了用结晶学检查包裹物的分子细节,开发了池-去卷积二硫化物交联策略。 II型拓扑异构酶仅显示适度的序列特异性-获得DNA结合结构的挑战是结晶所需的均质结合DNA的产生。已经采取了许多策略来产生均匀捕获的物种,这些物种代表双链通过机制中的不同离散中间体:二硫键与5'-磷酸系留的硫醇交联,捕获自杀性DNA底物(带有损伤的桥接物种和桥接3'- (硫代磷酸酯)和十字形DNA复合物。这些修饰的DNA寡核苷酸中的几种需要或允许创新新的核苷合成方法。这些捕获技术中的许多已成功地用于产生具有高均一性的各种DNA结合结构,但是,到目前为止,这些复合物均未产生衍射质量的晶体。

著录项

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Chemistry Biochemistry.; Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号