首页> 外文学位 >Titanium dioxide thin films: Understanding nanoscale oxide heteroepitaxy for silicon-based applications.
【24h】

Titanium dioxide thin films: Understanding nanoscale oxide heteroepitaxy for silicon-based applications.

机译:二氧化钛薄膜:了解基于硅的应用的纳米级氧化物异质外延。

获取原文
获取原文并翻译 | 示例

摘要

The work presented here discusses nucleation and growth of oxides at the nanoscale level. The overall perspective in comprehension of nanoscale oxide nucleation and growth is essential for utilizing oxide heteroepitaxy in silicon-based applications.; To separate the effects of chemistry and structure, this thesis investigates the initial stages of TiO2 nucleation and growth on a chemically compatible and lattice matched substrate, LaAlO3(001) (LAO) and on the technically relevant, though chemically very different, Si(001) surface. Although LAO(001) exhibits mixed La-O and Al-O2 surface terminations at 400°C, heteroepitaxial TiO2 grows out from its step-edge nucleation sites to cover both upper and lower terraces uniformly, regardless of termination. This growth behavior indicates that the substrate cations and the associated surface charges have minimal influence on the morphology in this single-metal oxide heteroepitaxy.; We then extend this work by studying the initial nucleation and growth of TiO2 on Si(001) using a unique buffer layer. The buffer layer is an integral component of successful oxide-on-silicon heteroepitaxy as it prevents silicide or SiOx formation, which would occur for direct TiO2 growth on silicon. We confirmed both monolayer as termination and an additional chalcogonide buffer layer (Ga2Se 3) are inert to molecular oxygen at elevated temperatures, however, only the Ga2Se3 film on Si(001):As is successful in preventing substrate-oxide or -silicide reactions from occuring. TiO 2 nucleates along the sides or "valleys" of the Ga 2Se3 nanowires. We use a concept from the oxide-on-oxide work to view the Se and Ga constituents as anion and cation, respectively. We then explore the effect of substrate temperature on TiO2 film morphology. The films are essentially unchanged from room temperature up to Tsub = 350°C, except for an increase in the average spacing between initial TiO2 nuclei with temperature. However, they undergo a morphological change somewhere between Tsub = 350°C and Tsub = 540°C. This morphological change is attributed to a phase change in the crystal, from the lattice matched anatase phase (at Tsub ≤ 350°C) to the thermodynamically stable rutile phase (at Tsub = 540°C). Growth at temperatures above 600°C led to desorption of the Ga2Se3 and oxidation of the substrate.; A significant proposed application of anatase on Si(001) is as a ferromagnetic component in spintronic devices, for which is must be doped with a magnetic ion. We investigated growth of Co0.05Ti0.95O2 films, demonstrating that Co-doped oxide films nucleate and grow in the same manner as pure TiO2 films. The doped films coalesce to a flat film within the first two molecular layers and continue to grow in a laminar fashion. Films over 20 molecular layers thick have an average surface roughness over 1 mum2 which is only ⅓ of a molecular layer larger than the starting substrate. No Co-rich surface clusters were observed, unlike other preparation methods. This surprising result is encouraging for future work in oxide on silicon heteroepitaxy. Measurements of the valence band show the oxide films have a small conduction band offset with the Si substrate, indicating the oxide-buffer-Si system is naturally well suited for spintronic applications.
机译:本文介绍的工作讨论了纳米级氧化物的成核和生长。理解纳米级氧化物成核和生长的整体观点对于在硅基应用中利用氧化物异外延至关重要。为了分离化学和结构的影响,本文研究了在化学相容和晶格匹配的衬底LaAlO3(001)(LAO)以及技术上相关但化学上非常不同的Si(001)上TiO2成核和生长的初始阶段。 )表面。尽管LAO(001)在400°C下表现出混合的La-O和Al-O2表面终止,但异质外延TiO2从其台阶状边缘形核部位长出,以均匀地覆盖上下平台,无论终止如何。这种生长行为表明底物阳离子和相关的表面电荷对该单金属氧化物异外延性的形态影响最小。然后,我们通过研究使用独特的缓冲层在Si(001)上TiO2的初始成核和生长来扩展这项工作。缓冲层是成功的硅上氧化物异种外延技术不可或缺的组成部分,因为它可以防止硅化物或SiOx的形成,而这会在硅上直接生长TiO2时发生。我们确认了单层作为终止层和附加的黄铜矿缓冲层(Ga2Se 3)在高温下对分子氧呈惰性,但是,只有Si(001)上的Ga2Se3膜才能成功地防止底物氧化物或-硅化物反应发生。 TiO 2沿Ga 2Se3纳米线的侧面或“谷”成核。我们使用氧化物对氧化物的概念将Se和Ga的成分分别视为阴离子和阳离子。然后,我们探讨了基材温度对TiO2薄膜形态的影响。薄膜从室温到Tsub = 350°C基本上没有变化,只是初始TiO2原子核之间的平均间距随温度增加而增加。但是,它们在Tsub = 350°C和Tsub = 540°C之间的某个地方发生形态变化。这种形态变化归因于晶体中的相变,从晶格匹配的锐钛矿相(Tsub≤350°C)到热力学稳定的金红石相(Tsub = 540°C)。在高于600°C的温度下生长会导致Ga2Se3的解吸和底物的氧化。锐钛矿在Si(001)上的一个重要的建议应用是作为自旋电子器件中的铁磁组件,为此必须掺杂磁性离子。我们研究了Co0.05Ti0.95O2薄膜的生长,证明了Co掺杂的氧化物薄膜成核并以与纯TiO2薄膜相同的方式生长。掺杂的膜在前两个分子层内聚结成平坦的膜,并以层状方式继续生长。厚度超过20分子层的薄膜的平均表面粗糙度超过1 mum2,仅为⅓。分子层的厚度大于起始底物。与其他制备方法不同,未观察到富钴表面簇。这一令人惊讶的结果鼓舞了硅异外延氧化物中未来的研究工作。价带的测量结果表明,氧化膜与Si衬底之间的导带偏移较小,这表明氧化物-缓冲剂-Si系统自然非常适合自旋电子学应用。

著录项

  • 作者

    Schmidt, Diedrich A.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号