首页> 外文学位 >Multiscale modeling of electronics cooling and energy-conversion devices.
【24h】

Multiscale modeling of electronics cooling and energy-conversion devices.

机译:电子冷却和能量转换设备的多尺度建模。

获取原文
获取原文并翻译 | 示例

摘要

It is noted that high density electronic devices have caused a sharp increase in heat-removal requirements and microchannel heat sinks applying forced convective boiling at the package level are developed to be very promising, as the attainable heat transfer rate is very favorable. In this work, numerical simulations are conducted to investigate flow boiling in microchannels. Since the boiling mechanisms are found to be strongly dependent on wall surface conditions, the validated two-phase flow boiling model is implemented to characterize nucleation sites on wall surfaces, addressing an optimal topology design which nucleates first under a given set of conditions from rather low superheating. Two cavity characteristic models are investigated to enable a compatible view. The stochastic model with randomly sized and located cavities has been proved to hinder the cooling capability by decreasing the critical heat flux, as compared to the deterministic model that comprises regular cavities. Additionally, the heat flux condition of the cooling target is studied to seek high-performing cooling schemes, considering seven different heating loads.;An attractive option for constructing Thermoelectric Generators (TEGs) is to incorporate a water-fed heat exchanger with commercially available thermoelectric modules. Two thermoelectric models are applied to predict the energy conversion performance of the TEGs. The thermal-based model employs a derivation of the Carnot efficiency, while the coupled-field model presents a more rigorous interfacial energy balance by capturing Joule heating, Seebeck, Peltier and Thomson effects. The model yielding better predictions of the conversion capability is then used to perform a computational examination of the TEGs embedded in 30 different configurations, which allows the identification and quantification of key design parameters including flow types, hot stream inlet temperatures, pressure drops, cross-sectional area, channel length and number of channels. Moreover, constrained by low thermodynamic efficiencies, TEGs require a comparatively large amount of heat to produce a given quantity of electricity. Further improvements in thermoelectric designs are thus needed. The feasibility of the two promising solutions to enhance power generation has been gauged. First, the patterned topography on wall surfaces is implemented and the improved performance has been observed by introducing stirred flows into the heat exchangers and equalizing the temperature across the channels. Second, the prospect of increasing the thermal transport capability of water by loading CuO nanoparticles in the TEGs with multi-scale heat exchangers is explored. The significant insight is gained to fabricate ideal TEGs having optimum power performance.
机译:应当指出,高密度电子器件引起了对散热的要求的急剧增加,并且由于可达到的传热率非常有利,因此在封装级应用强制对流沸腾的微通道散热器被开发为非常有前途的。在这项工作中,进行数值模拟以研究微通道中的沸腾现象。由于发现沸腾机理强烈依赖于壁表面条件,因此实施了经过验证的两相流沸腾模型来表征壁表面上的形核位置,从而解决了一种最佳拓扑设计,该设计首先在给定的一组条件下从相当低的温度成核过热。研究了两个腔特征模型以实现兼容的视图。与包含规则型腔的确定性模型相比,具有随机大小和位置的型腔的随机模型已被证明通过降低临界热通量来阻碍冷却能力。此外,研究了冷却目标的热通量条件,以考虑七个不同的热负荷以寻求高性能的冷却方案。;构建热电发电机(TEG)的一个有吸引力的选择是将水馈送热交换器与市售的热电相结合模块。应用了两个热电模型来预测TEG的能量转换性能。基于热的模型采用了卡诺效率的推导,而耦合场模型则通过捕获焦耳热,塞贝克,珀尔帖和汤姆森效应,表现出更严格的界面能量平衡。然后,该模型可更好地预测转化能力,然后将其用于嵌入30种不同配置的TEG的计算检查,从而可以识别和量化关键设计参数,包括流量类型,热流入口温度,压降,交叉截面积,通道长度和通道数。此外,由于热力学效率低,TEG需要相对大量的热量才能产生给定的电量。因此需要热电设计的进一步改进。已经评估了两种有希望的解决方案来增强发电的可行性。首先,在壁表面上实施了图案化的形貌,并且通过将搅拌流引入热交换器并均衡通道中的温度来观察到性能的改善。其次,探索了通过在多级热交换器中将三氧化二铜负载在TEG中来提高水的热传输能力的前景。获得了制造具有最佳功率性能的理想TEG的重要见解。

著录项

  • 作者

    Zhou, Siyi.;

  • 作者单位

    State University of New York at Binghamton.;

  • 授予单位 State University of New York at Binghamton.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 水产、渔业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号